Loading…

Thin-shell instability in collisionless plasma

Thin-shell instability is one process which can generate entangled structures in astrophysical plasma on collisional (fluid) scales. It is driven by a spatially varying imbalance between the ram pressure of the inflowing upstream plasma and the downstream's thermal pressure at a nonplanar shock...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2015-09, Vol.92 (3), p.031101-031101, Article 031101
Main Authors: Dieckmann, M E, Ahmed, H, Doria, D, Sarri, G, Walder, R, Folini, D, Bret, A, Ynnerman, A, Borghesi, M
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Thin-shell instability is one process which can generate entangled structures in astrophysical plasma on collisional (fluid) scales. It is driven by a spatially varying imbalance between the ram pressure of the inflowing upstream plasma and the downstream's thermal pressure at a nonplanar shock. Here we show by means of a particle-in-cell simulation that an analog process can destabilize a thin shell formed by two interpenetrating, unmagnetized, and collisionless plasma clouds. The amplitude of the shell's spatial modulation grows and saturates after about ten inverse proton plasma frequencies, when the shell consists of connected piecewise linear patches.
ISSN:1539-3755
1550-2376
1550-2376
DOI:10.1103/PhysRevE.92.031101