Loading…
Defect formation in GaAs/GaNxAs1-x core/shell nanowires
Photoluminescence and optically detected magnetic resonance (ODMR) spectroscopies are used to investigate the formation and role of defects in GaAs/GaNxAs1-x core/shell nanowires (NWs) grown by molecular beam epitaxy on Si substrates. Gallium vacancies, which act as non-radiative recombination (NRR)...
Saved in:
Published in: | Applied physics letters 2016-11, Vol.109 (20) |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c431t-ec0c4b57d15ff59d9e04cc7e6d80a4a71138f632290c990006094389955072353 |
---|---|
cites | cdi_FETCH-LOGICAL-c431t-ec0c4b57d15ff59d9e04cc7e6d80a4a71138f632290c990006094389955072353 |
container_end_page | |
container_issue | 20 |
container_start_page | |
container_title | Applied physics letters |
container_volume | 109 |
creator | Stehr, J. E. Chen, S. L. Jansson, M. Ishikawa, F. Chen, W. M. Buyanova, I. A. |
description | Photoluminescence and optically detected magnetic resonance (ODMR) spectroscopies are used to investigate the formation and role of defects in GaAs/GaNxAs1-x core/shell nanowires (NWs) grown by molecular beam epitaxy on Si substrates. Gallium vacancies, which act as non-radiative recombination (NRR) centers, are identified by ODMR. It is shown that the defects are formed in bulk regions, i.e., not on the surface, of the GaNAs shell and that their concentration increases with increasing nitrogen content. Temperature dependent photoluminescence experiments reveal, on the other hand, suppressed thermal quenching of the near-band-edge emission with increasing [N]. This leads to the conclusion that the dominant NRR processes in the studied NWs are governed by surface defects, whereas the role of gallium vacancies in the observed thermally activated NRR is minor. |
doi_str_mv | 10.1063/1.4967721 |
format | article |
fullrecord | <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_liu_133112</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2121536442</sourcerecordid><originalsourceid>FETCH-LOGICAL-c431t-ec0c4b57d15ff59d9e04cc7e6d80a4a71138f632290c990006094389955072353</originalsourceid><addsrcrecordid>eNqd0M9LwzAUB_AgCs7pwf-g4EmhW15-NM2xbDqFoRf1GrI01YyuqUnn5n9v54bePT0efHh83xehS8AjwBkdw4jJTAgCR2gAWIiUAuTHaIAxpmkmOZyisxiX_coJpQMkpraypksqH1a6c75JXJPMdBHHM_24LSKk28T4YMfx3dZ10ujGb1yw8RydVLqO9uIwh-jl7vZ5cp_On2YPk2KeGkahS63Bhi24KIFXFZeltJgZI2xW5lgzLQBoXmWUEImNlH2qDEtGcyk5x4JQToco3d-NG9uuF6oNbqXDl_Laqal7LZQPb6p2awW0_5T0_mrv2-A_1jZ2aunXoekjKgIEOM0Y26nrvTLBxxhs9XsXsNr1qEAdeuztzSGBcd1PRf_Dnz78QdWWFf0Gobp9ew</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2121536442</pqid></control><display><type>article</type><title>Defect formation in GaAs/GaNxAs1-x core/shell nanowires</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP Journals (American Institute of Physics)</source><creator>Stehr, J. E. ; Chen, S. L. ; Jansson, M. ; Ishikawa, F. ; Chen, W. M. ; Buyanova, I. A.</creator><creatorcontrib>Stehr, J. E. ; Chen, S. L. ; Jansson, M. ; Ishikawa, F. ; Chen, W. M. ; Buyanova, I. A.</creatorcontrib><description>Photoluminescence and optically detected magnetic resonance (ODMR) spectroscopies are used to investigate the formation and role of defects in GaAs/GaNxAs1-x core/shell nanowires (NWs) grown by molecular beam epitaxy on Si substrates. Gallium vacancies, which act as non-radiative recombination (NRR) centers, are identified by ODMR. It is shown that the defects are formed in bulk regions, i.e., not on the surface, of the GaNAs shell and that their concentration increases with increasing nitrogen content. Temperature dependent photoluminescence experiments reveal, on the other hand, suppressed thermal quenching of the near-band-edge emission with increasing [N]. This leads to the conclusion that the dominant NRR processes in the studied NWs are governed by surface defects, whereas the role of gallium vacancies in the observed thermally activated NRR is minor.</description><identifier>ISSN: 0003-6951</identifier><identifier>ISSN: 1077-3118</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.4967721</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Defects ; Epitaxial growth ; Gallium arsenide ; Magnetic resonance ; Molecular beam epitaxy ; Nanowires ; Nitrogen ; Photoluminescence ; Radiative recombination ; Silicon substrates ; Surface defects ; Temperature dependence ; Vacancies</subject><ispartof>Applied physics letters, 2016-11, Vol.109 (20)</ispartof><rights>Author(s)</rights><rights>2016 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c431t-ec0c4b57d15ff59d9e04cc7e6d80a4a71138f632290c990006094389955072353</citedby><cites>FETCH-LOGICAL-c431t-ec0c4b57d15ff59d9e04cc7e6d80a4a71138f632290c990006094389955072353</cites><orcidid>0000-0002-5632-056X ; 0000-0002-6405-9509 ; 0000-0001-7640-8086</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/1.4967721$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,780,782,784,795,885,27924,27925,76383</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-133112$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Stehr, J. E.</creatorcontrib><creatorcontrib>Chen, S. L.</creatorcontrib><creatorcontrib>Jansson, M.</creatorcontrib><creatorcontrib>Ishikawa, F.</creatorcontrib><creatorcontrib>Chen, W. M.</creatorcontrib><creatorcontrib>Buyanova, I. A.</creatorcontrib><title>Defect formation in GaAs/GaNxAs1-x core/shell nanowires</title><title>Applied physics letters</title><description>Photoluminescence and optically detected magnetic resonance (ODMR) spectroscopies are used to investigate the formation and role of defects in GaAs/GaNxAs1-x core/shell nanowires (NWs) grown by molecular beam epitaxy on Si substrates. Gallium vacancies, which act as non-radiative recombination (NRR) centers, are identified by ODMR. It is shown that the defects are formed in bulk regions, i.e., not on the surface, of the GaNAs shell and that their concentration increases with increasing nitrogen content. Temperature dependent photoluminescence experiments reveal, on the other hand, suppressed thermal quenching of the near-band-edge emission with increasing [N]. This leads to the conclusion that the dominant NRR processes in the studied NWs are governed by surface defects, whereas the role of gallium vacancies in the observed thermally activated NRR is minor.</description><subject>Applied physics</subject><subject>Defects</subject><subject>Epitaxial growth</subject><subject>Gallium arsenide</subject><subject>Magnetic resonance</subject><subject>Molecular beam epitaxy</subject><subject>Nanowires</subject><subject>Nitrogen</subject><subject>Photoluminescence</subject><subject>Radiative recombination</subject><subject>Silicon substrates</subject><subject>Surface defects</subject><subject>Temperature dependence</subject><subject>Vacancies</subject><issn>0003-6951</issn><issn>1077-3118</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqd0M9LwzAUB_AgCs7pwf-g4EmhW15-NM2xbDqFoRf1GrI01YyuqUnn5n9v54bePT0efHh83xehS8AjwBkdw4jJTAgCR2gAWIiUAuTHaIAxpmkmOZyisxiX_coJpQMkpraypksqH1a6c75JXJPMdBHHM_24LSKk28T4YMfx3dZ10ujGb1yw8RydVLqO9uIwh-jl7vZ5cp_On2YPk2KeGkahS63Bhi24KIFXFZeltJgZI2xW5lgzLQBoXmWUEImNlH2qDEtGcyk5x4JQToco3d-NG9uuF6oNbqXDl_Laqal7LZQPb6p2awW0_5T0_mrv2-A_1jZ2aunXoekjKgIEOM0Y26nrvTLBxxhs9XsXsNr1qEAdeuztzSGBcd1PRf_Dnz78QdWWFf0Gobp9ew</recordid><startdate>20161114</startdate><enddate>20161114</enddate><creator>Stehr, J. E.</creator><creator>Chen, S. L.</creator><creator>Jansson, M.</creator><creator>Ishikawa, F.</creator><creator>Chen, W. M.</creator><creator>Buyanova, I. A.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>DG8</scope><orcidid>https://orcid.org/0000-0002-5632-056X</orcidid><orcidid>https://orcid.org/0000-0002-6405-9509</orcidid><orcidid>https://orcid.org/0000-0001-7640-8086</orcidid></search><sort><creationdate>20161114</creationdate><title>Defect formation in GaAs/GaNxAs1-x core/shell nanowires</title><author>Stehr, J. E. ; Chen, S. L. ; Jansson, M. ; Ishikawa, F. ; Chen, W. M. ; Buyanova, I. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c431t-ec0c4b57d15ff59d9e04cc7e6d80a4a71138f632290c990006094389955072353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Applied physics</topic><topic>Defects</topic><topic>Epitaxial growth</topic><topic>Gallium arsenide</topic><topic>Magnetic resonance</topic><topic>Molecular beam epitaxy</topic><topic>Nanowires</topic><topic>Nitrogen</topic><topic>Photoluminescence</topic><topic>Radiative recombination</topic><topic>Silicon substrates</topic><topic>Surface defects</topic><topic>Temperature dependence</topic><topic>Vacancies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stehr, J. E.</creatorcontrib><creatorcontrib>Chen, S. L.</creatorcontrib><creatorcontrib>Jansson, M.</creatorcontrib><creatorcontrib>Ishikawa, F.</creatorcontrib><creatorcontrib>Chen, W. M.</creatorcontrib><creatorcontrib>Buyanova, I. A.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Linköpings universitet</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stehr, J. E.</au><au>Chen, S. L.</au><au>Jansson, M.</au><au>Ishikawa, F.</au><au>Chen, W. M.</au><au>Buyanova, I. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Defect formation in GaAs/GaNxAs1-x core/shell nanowires</atitle><jtitle>Applied physics letters</jtitle><date>2016-11-14</date><risdate>2016</risdate><volume>109</volume><issue>20</issue><issn>0003-6951</issn><issn>1077-3118</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Photoluminescence and optically detected magnetic resonance (ODMR) spectroscopies are used to investigate the formation and role of defects in GaAs/GaNxAs1-x core/shell nanowires (NWs) grown by molecular beam epitaxy on Si substrates. Gallium vacancies, which act as non-radiative recombination (NRR) centers, are identified by ODMR. It is shown that the defects are formed in bulk regions, i.e., not on the surface, of the GaNAs shell and that their concentration increases with increasing nitrogen content. Temperature dependent photoluminescence experiments reveal, on the other hand, suppressed thermal quenching of the near-band-edge emission with increasing [N]. This leads to the conclusion that the dominant NRR processes in the studied NWs are governed by surface defects, whereas the role of gallium vacancies in the observed thermally activated NRR is minor.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4967721</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-5632-056X</orcidid><orcidid>https://orcid.org/0000-0002-6405-9509</orcidid><orcidid>https://orcid.org/0000-0001-7640-8086</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2016-11, Vol.109 (20) |
issn | 0003-6951 1077-3118 1077-3118 |
language | eng |
recordid | cdi_swepub_primary_oai_DiVA_org_liu_133112 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP Journals (American Institute of Physics) |
subjects | Applied physics Defects Epitaxial growth Gallium arsenide Magnetic resonance Molecular beam epitaxy Nanowires Nitrogen Photoluminescence Radiative recombination Silicon substrates Surface defects Temperature dependence Vacancies |
title | Defect formation in GaAs/GaNxAs1-x core/shell nanowires |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T22%3A37%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Defect%20formation%20in%20GaAs/GaNxAs1-x%20core/shell%20nanowires&rft.jtitle=Applied%20physics%20letters&rft.au=Stehr,%20J.%20E.&rft.date=2016-11-14&rft.volume=109&rft.issue=20&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/1.4967721&rft_dat=%3Cproquest_swepu%3E2121536442%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c431t-ec0c4b57d15ff59d9e04cc7e6d80a4a71138f632290c990006094389955072353%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2121536442&rft_id=info:pmid/&rfr_iscdi=true |