Loading…

Defect formation in GaAs/GaNxAs1-x core/shell nanowires

Photoluminescence and optically detected magnetic resonance (ODMR) spectroscopies are used to investigate the formation and role of defects in GaAs/GaNxAs1-x core/shell nanowires (NWs) grown by molecular beam epitaxy on Si substrates. Gallium vacancies, which act as non-radiative recombination (NRR)...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics letters 2016-11, Vol.109 (20)
Main Authors: Stehr, J. E., Chen, S. L., Jansson, M., Ishikawa, F., Chen, W. M., Buyanova, I. A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c431t-ec0c4b57d15ff59d9e04cc7e6d80a4a71138f632290c990006094389955072353
cites cdi_FETCH-LOGICAL-c431t-ec0c4b57d15ff59d9e04cc7e6d80a4a71138f632290c990006094389955072353
container_end_page
container_issue 20
container_start_page
container_title Applied physics letters
container_volume 109
creator Stehr, J. E.
Chen, S. L.
Jansson, M.
Ishikawa, F.
Chen, W. M.
Buyanova, I. A.
description Photoluminescence and optically detected magnetic resonance (ODMR) spectroscopies are used to investigate the formation and role of defects in GaAs/GaNxAs1-x core/shell nanowires (NWs) grown by molecular beam epitaxy on Si substrates. Gallium vacancies, which act as non-radiative recombination (NRR) centers, are identified by ODMR. It is shown that the defects are formed in bulk regions, i.e., not on the surface, of the GaNAs shell and that their concentration increases with increasing nitrogen content. Temperature dependent photoluminescence experiments reveal, on the other hand, suppressed thermal quenching of the near-band-edge emission with increasing [N]. This leads to the conclusion that the dominant NRR processes in the studied NWs are governed by surface defects, whereas the role of gallium vacancies in the observed thermally activated NRR is minor.
doi_str_mv 10.1063/1.4967721
format article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_liu_133112</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2121536442</sourcerecordid><originalsourceid>FETCH-LOGICAL-c431t-ec0c4b57d15ff59d9e04cc7e6d80a4a71138f632290c990006094389955072353</originalsourceid><addsrcrecordid>eNqd0M9LwzAUB_AgCs7pwf-g4EmhW15-NM2xbDqFoRf1GrI01YyuqUnn5n9v54bePT0efHh83xehS8AjwBkdw4jJTAgCR2gAWIiUAuTHaIAxpmkmOZyisxiX_coJpQMkpraypksqH1a6c75JXJPMdBHHM_24LSKk28T4YMfx3dZ10ujGb1yw8RydVLqO9uIwh-jl7vZ5cp_On2YPk2KeGkahS63Bhi24KIFXFZeltJgZI2xW5lgzLQBoXmWUEImNlH2qDEtGcyk5x4JQToco3d-NG9uuF6oNbqXDl_Laqal7LZQPb6p2awW0_5T0_mrv2-A_1jZ2aunXoekjKgIEOM0Y26nrvTLBxxhs9XsXsNr1qEAdeuztzSGBcd1PRf_Dnz78QdWWFf0Gobp9ew</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2121536442</pqid></control><display><type>article</type><title>Defect formation in GaAs/GaNxAs1-x core/shell nanowires</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP Journals (American Institute of Physics)</source><creator>Stehr, J. E. ; Chen, S. L. ; Jansson, M. ; Ishikawa, F. ; Chen, W. M. ; Buyanova, I. A.</creator><creatorcontrib>Stehr, J. E. ; Chen, S. L. ; Jansson, M. ; Ishikawa, F. ; Chen, W. M. ; Buyanova, I. A.</creatorcontrib><description>Photoluminescence and optically detected magnetic resonance (ODMR) spectroscopies are used to investigate the formation and role of defects in GaAs/GaNxAs1-x core/shell nanowires (NWs) grown by molecular beam epitaxy on Si substrates. Gallium vacancies, which act as non-radiative recombination (NRR) centers, are identified by ODMR. It is shown that the defects are formed in bulk regions, i.e., not on the surface, of the GaNAs shell and that their concentration increases with increasing nitrogen content. Temperature dependent photoluminescence experiments reveal, on the other hand, suppressed thermal quenching of the near-band-edge emission with increasing [N]. This leads to the conclusion that the dominant NRR processes in the studied NWs are governed by surface defects, whereas the role of gallium vacancies in the observed thermally activated NRR is minor.</description><identifier>ISSN: 0003-6951</identifier><identifier>ISSN: 1077-3118</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.4967721</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Defects ; Epitaxial growth ; Gallium arsenide ; Magnetic resonance ; Molecular beam epitaxy ; Nanowires ; Nitrogen ; Photoluminescence ; Radiative recombination ; Silicon substrates ; Surface defects ; Temperature dependence ; Vacancies</subject><ispartof>Applied physics letters, 2016-11, Vol.109 (20)</ispartof><rights>Author(s)</rights><rights>2016 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c431t-ec0c4b57d15ff59d9e04cc7e6d80a4a71138f632290c990006094389955072353</citedby><cites>FETCH-LOGICAL-c431t-ec0c4b57d15ff59d9e04cc7e6d80a4a71138f632290c990006094389955072353</cites><orcidid>0000-0002-5632-056X ; 0000-0002-6405-9509 ; 0000-0001-7640-8086</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/1.4967721$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,780,782,784,795,885,27924,27925,76383</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-133112$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Stehr, J. E.</creatorcontrib><creatorcontrib>Chen, S. L.</creatorcontrib><creatorcontrib>Jansson, M.</creatorcontrib><creatorcontrib>Ishikawa, F.</creatorcontrib><creatorcontrib>Chen, W. M.</creatorcontrib><creatorcontrib>Buyanova, I. A.</creatorcontrib><title>Defect formation in GaAs/GaNxAs1-x core/shell nanowires</title><title>Applied physics letters</title><description>Photoluminescence and optically detected magnetic resonance (ODMR) spectroscopies are used to investigate the formation and role of defects in GaAs/GaNxAs1-x core/shell nanowires (NWs) grown by molecular beam epitaxy on Si substrates. Gallium vacancies, which act as non-radiative recombination (NRR) centers, are identified by ODMR. It is shown that the defects are formed in bulk regions, i.e., not on the surface, of the GaNAs shell and that their concentration increases with increasing nitrogen content. Temperature dependent photoluminescence experiments reveal, on the other hand, suppressed thermal quenching of the near-band-edge emission with increasing [N]. This leads to the conclusion that the dominant NRR processes in the studied NWs are governed by surface defects, whereas the role of gallium vacancies in the observed thermally activated NRR is minor.</description><subject>Applied physics</subject><subject>Defects</subject><subject>Epitaxial growth</subject><subject>Gallium arsenide</subject><subject>Magnetic resonance</subject><subject>Molecular beam epitaxy</subject><subject>Nanowires</subject><subject>Nitrogen</subject><subject>Photoluminescence</subject><subject>Radiative recombination</subject><subject>Silicon substrates</subject><subject>Surface defects</subject><subject>Temperature dependence</subject><subject>Vacancies</subject><issn>0003-6951</issn><issn>1077-3118</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqd0M9LwzAUB_AgCs7pwf-g4EmhW15-NM2xbDqFoRf1GrI01YyuqUnn5n9v54bePT0efHh83xehS8AjwBkdw4jJTAgCR2gAWIiUAuTHaIAxpmkmOZyisxiX_coJpQMkpraypksqH1a6c75JXJPMdBHHM_24LSKk28T4YMfx3dZ10ujGb1yw8RydVLqO9uIwh-jl7vZ5cp_On2YPk2KeGkahS63Bhi24KIFXFZeltJgZI2xW5lgzLQBoXmWUEImNlH2qDEtGcyk5x4JQToco3d-NG9uuF6oNbqXDl_Laqal7LZQPb6p2awW0_5T0_mrv2-A_1jZ2aunXoekjKgIEOM0Y26nrvTLBxxhs9XsXsNr1qEAdeuztzSGBcd1PRf_Dnz78QdWWFf0Gobp9ew</recordid><startdate>20161114</startdate><enddate>20161114</enddate><creator>Stehr, J. E.</creator><creator>Chen, S. L.</creator><creator>Jansson, M.</creator><creator>Ishikawa, F.</creator><creator>Chen, W. M.</creator><creator>Buyanova, I. A.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>DG8</scope><orcidid>https://orcid.org/0000-0002-5632-056X</orcidid><orcidid>https://orcid.org/0000-0002-6405-9509</orcidid><orcidid>https://orcid.org/0000-0001-7640-8086</orcidid></search><sort><creationdate>20161114</creationdate><title>Defect formation in GaAs/GaNxAs1-x core/shell nanowires</title><author>Stehr, J. E. ; Chen, S. L. ; Jansson, M. ; Ishikawa, F. ; Chen, W. M. ; Buyanova, I. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c431t-ec0c4b57d15ff59d9e04cc7e6d80a4a71138f632290c990006094389955072353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Applied physics</topic><topic>Defects</topic><topic>Epitaxial growth</topic><topic>Gallium arsenide</topic><topic>Magnetic resonance</topic><topic>Molecular beam epitaxy</topic><topic>Nanowires</topic><topic>Nitrogen</topic><topic>Photoluminescence</topic><topic>Radiative recombination</topic><topic>Silicon substrates</topic><topic>Surface defects</topic><topic>Temperature dependence</topic><topic>Vacancies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stehr, J. E.</creatorcontrib><creatorcontrib>Chen, S. L.</creatorcontrib><creatorcontrib>Jansson, M.</creatorcontrib><creatorcontrib>Ishikawa, F.</creatorcontrib><creatorcontrib>Chen, W. M.</creatorcontrib><creatorcontrib>Buyanova, I. A.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Linköpings universitet</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stehr, J. E.</au><au>Chen, S. L.</au><au>Jansson, M.</au><au>Ishikawa, F.</au><au>Chen, W. M.</au><au>Buyanova, I. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Defect formation in GaAs/GaNxAs1-x core/shell nanowires</atitle><jtitle>Applied physics letters</jtitle><date>2016-11-14</date><risdate>2016</risdate><volume>109</volume><issue>20</issue><issn>0003-6951</issn><issn>1077-3118</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Photoluminescence and optically detected magnetic resonance (ODMR) spectroscopies are used to investigate the formation and role of defects in GaAs/GaNxAs1-x core/shell nanowires (NWs) grown by molecular beam epitaxy on Si substrates. Gallium vacancies, which act as non-radiative recombination (NRR) centers, are identified by ODMR. It is shown that the defects are formed in bulk regions, i.e., not on the surface, of the GaNAs shell and that their concentration increases with increasing nitrogen content. Temperature dependent photoluminescence experiments reveal, on the other hand, suppressed thermal quenching of the near-band-edge emission with increasing [N]. This leads to the conclusion that the dominant NRR processes in the studied NWs are governed by surface defects, whereas the role of gallium vacancies in the observed thermally activated NRR is minor.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4967721</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-5632-056X</orcidid><orcidid>https://orcid.org/0000-0002-6405-9509</orcidid><orcidid>https://orcid.org/0000-0001-7640-8086</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2016-11, Vol.109 (20)
issn 0003-6951
1077-3118
1077-3118
language eng
recordid cdi_swepub_primary_oai_DiVA_org_liu_133112
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP Journals (American Institute of Physics)
subjects Applied physics
Defects
Epitaxial growth
Gallium arsenide
Magnetic resonance
Molecular beam epitaxy
Nanowires
Nitrogen
Photoluminescence
Radiative recombination
Silicon substrates
Surface defects
Temperature dependence
Vacancies
title Defect formation in GaAs/GaNxAs1-x core/shell nanowires
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T22%3A37%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Defect%20formation%20in%20GaAs/GaNxAs1-x%20core/shell%20nanowires&rft.jtitle=Applied%20physics%20letters&rft.au=Stehr,%20J.%20E.&rft.date=2016-11-14&rft.volume=109&rft.issue=20&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/1.4967721&rft_dat=%3Cproquest_swepu%3E2121536442%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c431t-ec0c4b57d15ff59d9e04cc7e6d80a4a71138f632290c990006094389955072353%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2121536442&rft_id=info:pmid/&rfr_iscdi=true