Loading…

Electric-Field Control of Spin-Polarization and Semiconductor-to-Metal Transition in Carbon-Atom-Chain Devices

We propose hybrid molecular systems containing small carbon atomic chains interconnected by graphene-like flakes, theoretically predicted as true energy minima, as low-dimensional structures that may be useful in electronic devices at the limit of the atomic miniaturization. The effects of an extern...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physical chemistry. C 2017-11, Vol.121 (46), p.26125-26132
Main Authors: dos Santos, Renato Batista, Mota, Fernando de Brito, Rivelino, Roberto, Gueorguiev, Gueorgui K
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a360t-c1ec904b6f48caf89859f148b541b0ce8159395558366d02e71bc062c98287cc3
cites cdi_FETCH-LOGICAL-a360t-c1ec904b6f48caf89859f148b541b0ce8159395558366d02e71bc062c98287cc3
container_end_page 26132
container_issue 46
container_start_page 26125
container_title Journal of physical chemistry. C
container_volume 121
creator dos Santos, Renato Batista
Mota, Fernando de Brito
Rivelino, Roberto
Gueorguiev, Gueorgui K
description We propose hybrid molecular systems containing small carbon atomic chains interconnected by graphene-like flakes, theoretically predicted as true energy minima, as low-dimensional structures that may be useful in electronic devices at the limit of the atomic miniaturization. The effects of an external electric field applied along the direction of the carbon chains indicate that it is possible to control energy gap and spin-polarization with sufficiently high strength, within the limit of the structural restoring of the systems. In this sense, by applying electric fields with magnitudes in the 1–5 V/nm range, we obtain semiconductor-to-metallic transitions for all odd-numbered carbon-chain systems proposed here. Furthermore, high-spin-to-low-spin transitions are determined for these systems as a function of the electric-field magnitude. In the case of the even-numbered carbon-chain systems, the overall electric field effect is pushing electron density near the Fermi level, leading to a gapless or metallic regime at 3.0 V/nm. An electric-field control of the spin-polarization of these latter systems is only achieved by doping the extremities of the graphene-like terminations with sulfur atoms. This finding, however, is beneficial for applications of these systems in spin-controlled carbon-based devices connected by gold electrodes, even in the presence of a weak spin–orbit coupling.
doi_str_mv 10.1021/acs.jpcc.7b09447
format article
fullrecord <record><control><sourceid>acs_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_liu_143634</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>h13634420</sourcerecordid><originalsourceid>FETCH-LOGICAL-a360t-c1ec904b6f48caf89859f148b541b0ce8159395558366d02e71bc062c98287cc3</originalsourceid><addsrcrecordid>eNp1kE1PwzAMhisEEmNw59gfQEbSJG16nLoNkIZA2uAapW4KmbqkSloQ_Hq6D-3GyZb9vJb8RNEtwROCE3KvIEw2LcAkK3HOWHYWjUhOE5Qxzs9PPcsuo6sQNhhzigkdRXbeaOi8AbQwuqniwtnOuyZ2dbxqjUWvrlHe_KrOOBsrW8UrvTXgbNVD5zzqHHrWnWritVc2mD1lbFwoXzqLpp3bouJTDZOZ_jKgw3V0Uasm6JtjHUdvi_m6eETLl4enYrpEiqa4Q0A05JiVac0EqFrkguc1YaLkjJQYtCA8pznnXNA0rXCiM1ICThPIRSIyADqO0OFu-NZtX8rWm63yP9IpI2fmfSqd_5CN6SVhNKVs4PGBB-9C8Lo-JQiWO79y8Ct3fuXR7xC5O0T2G9d7Ozz0P_4Hm-t_ww</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Electric-Field Control of Spin-Polarization and Semiconductor-to-Metal Transition in Carbon-Atom-Chain Devices</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>dos Santos, Renato Batista ; Mota, Fernando de Brito ; Rivelino, Roberto ; Gueorguiev, Gueorgui K</creator><creatorcontrib>dos Santos, Renato Batista ; Mota, Fernando de Brito ; Rivelino, Roberto ; Gueorguiev, Gueorgui K</creatorcontrib><description>We propose hybrid molecular systems containing small carbon atomic chains interconnected by graphene-like flakes, theoretically predicted as true energy minima, as low-dimensional structures that may be useful in electronic devices at the limit of the atomic miniaturization. The effects of an external electric field applied along the direction of the carbon chains indicate that it is possible to control energy gap and spin-polarization with sufficiently high strength, within the limit of the structural restoring of the systems. In this sense, by applying electric fields with magnitudes in the 1–5 V/nm range, we obtain semiconductor-to-metallic transitions for all odd-numbered carbon-chain systems proposed here. Furthermore, high-spin-to-low-spin transitions are determined for these systems as a function of the electric-field magnitude. In the case of the even-numbered carbon-chain systems, the overall electric field effect is pushing electron density near the Fermi level, leading to a gapless or metallic regime at 3.0 V/nm. An electric-field control of the spin-polarization of these latter systems is only achieved by doping the extremities of the graphene-like terminations with sulfur atoms. This finding, however, is beneficial for applications of these systems in spin-controlled carbon-based devices connected by gold electrodes, even in the presence of a weak spin–orbit coupling.</description><identifier>ISSN: 1932-7447</identifier><identifier>ISSN: 1932-7455</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.7b09447</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Journal of physical chemistry. C, 2017-11, Vol.121 (46), p.26125-26132</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a360t-c1ec904b6f48caf89859f148b541b0ce8159395558366d02e71bc062c98287cc3</citedby><cites>FETCH-LOGICAL-a360t-c1ec904b6f48caf89859f148b541b0ce8159395558366d02e71bc062c98287cc3</cites><orcidid>0000-0003-2679-1640</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27905,27906</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-143634$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>dos Santos, Renato Batista</creatorcontrib><creatorcontrib>Mota, Fernando de Brito</creatorcontrib><creatorcontrib>Rivelino, Roberto</creatorcontrib><creatorcontrib>Gueorguiev, Gueorgui K</creatorcontrib><title>Electric-Field Control of Spin-Polarization and Semiconductor-to-Metal Transition in Carbon-Atom-Chain Devices</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>We propose hybrid molecular systems containing small carbon atomic chains interconnected by graphene-like flakes, theoretically predicted as true energy minima, as low-dimensional structures that may be useful in electronic devices at the limit of the atomic miniaturization. The effects of an external electric field applied along the direction of the carbon chains indicate that it is possible to control energy gap and spin-polarization with sufficiently high strength, within the limit of the structural restoring of the systems. In this sense, by applying electric fields with magnitudes in the 1–5 V/nm range, we obtain semiconductor-to-metallic transitions for all odd-numbered carbon-chain systems proposed here. Furthermore, high-spin-to-low-spin transitions are determined for these systems as a function of the electric-field magnitude. In the case of the even-numbered carbon-chain systems, the overall electric field effect is pushing electron density near the Fermi level, leading to a gapless or metallic regime at 3.0 V/nm. An electric-field control of the spin-polarization of these latter systems is only achieved by doping the extremities of the graphene-like terminations with sulfur atoms. This finding, however, is beneficial for applications of these systems in spin-controlled carbon-based devices connected by gold electrodes, even in the presence of a weak spin–orbit coupling.</description><issn>1932-7447</issn><issn>1932-7455</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kE1PwzAMhisEEmNw59gfQEbSJG16nLoNkIZA2uAapW4KmbqkSloQ_Hq6D-3GyZb9vJb8RNEtwROCE3KvIEw2LcAkK3HOWHYWjUhOE5Qxzs9PPcsuo6sQNhhzigkdRXbeaOi8AbQwuqniwtnOuyZ2dbxqjUWvrlHe_KrOOBsrW8UrvTXgbNVD5zzqHHrWnWritVc2mD1lbFwoXzqLpp3bouJTDZOZ_jKgw3V0Uasm6JtjHUdvi_m6eETLl4enYrpEiqa4Q0A05JiVac0EqFrkguc1YaLkjJQYtCA8pznnXNA0rXCiM1ICThPIRSIyADqO0OFu-NZtX8rWm63yP9IpI2fmfSqd_5CN6SVhNKVs4PGBB-9C8Lo-JQiWO79y8Ct3fuXR7xC5O0T2G9d7Ozz0P_4Hm-t_ww</recordid><startdate>20171122</startdate><enddate>20171122</enddate><creator>dos Santos, Renato Batista</creator><creator>Mota, Fernando de Brito</creator><creator>Rivelino, Roberto</creator><creator>Gueorguiev, Gueorgui K</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABXSW</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>DG8</scope><scope>ZZAVC</scope><orcidid>https://orcid.org/0000-0003-2679-1640</orcidid></search><sort><creationdate>20171122</creationdate><title>Electric-Field Control of Spin-Polarization and Semiconductor-to-Metal Transition in Carbon-Atom-Chain Devices</title><author>dos Santos, Renato Batista ; Mota, Fernando de Brito ; Rivelino, Roberto ; Gueorguiev, Gueorgui K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a360t-c1ec904b6f48caf89859f148b541b0ce8159395558366d02e71bc062c98287cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>dos Santos, Renato Batista</creatorcontrib><creatorcontrib>Mota, Fernando de Brito</creatorcontrib><creatorcontrib>Rivelino, Roberto</creatorcontrib><creatorcontrib>Gueorguiev, Gueorgui K</creatorcontrib><collection>CrossRef</collection><collection>SWEPUB Linköpings universitet full text</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Linköpings universitet</collection><collection>SwePub Articles full text</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>dos Santos, Renato Batista</au><au>Mota, Fernando de Brito</au><au>Rivelino, Roberto</au><au>Gueorguiev, Gueorgui K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electric-Field Control of Spin-Polarization and Semiconductor-to-Metal Transition in Carbon-Atom-Chain Devices</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2017-11-22</date><risdate>2017</risdate><volume>121</volume><issue>46</issue><spage>26125</spage><epage>26132</epage><pages>26125-26132</pages><issn>1932-7447</issn><issn>1932-7455</issn><eissn>1932-7455</eissn><abstract>We propose hybrid molecular systems containing small carbon atomic chains interconnected by graphene-like flakes, theoretically predicted as true energy minima, as low-dimensional structures that may be useful in electronic devices at the limit of the atomic miniaturization. The effects of an external electric field applied along the direction of the carbon chains indicate that it is possible to control energy gap and spin-polarization with sufficiently high strength, within the limit of the structural restoring of the systems. In this sense, by applying electric fields with magnitudes in the 1–5 V/nm range, we obtain semiconductor-to-metallic transitions for all odd-numbered carbon-chain systems proposed here. Furthermore, high-spin-to-low-spin transitions are determined for these systems as a function of the electric-field magnitude. In the case of the even-numbered carbon-chain systems, the overall electric field effect is pushing electron density near the Fermi level, leading to a gapless or metallic regime at 3.0 V/nm. An electric-field control of the spin-polarization of these latter systems is only achieved by doping the extremities of the graphene-like terminations with sulfur atoms. This finding, however, is beneficial for applications of these systems in spin-controlled carbon-based devices connected by gold electrodes, even in the presence of a weak spin–orbit coupling.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.7b09447</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-2679-1640</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2017-11, Vol.121 (46), p.26125-26132
issn 1932-7447
1932-7455
1932-7455
language eng
recordid cdi_swepub_primary_oai_DiVA_org_liu_143634
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Electric-Field Control of Spin-Polarization and Semiconductor-to-Metal Transition in Carbon-Atom-Chain Devices
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T02%3A27%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electric-Field%20Control%20of%20Spin-Polarization%20and%20Semiconductor-to-Metal%20Transition%20in%20Carbon-Atom-Chain%20Devices&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=dos%20Santos,%20Renato%20Batista&rft.date=2017-11-22&rft.volume=121&rft.issue=46&rft.spage=26125&rft.epage=26132&rft.pages=26125-26132&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.7b09447&rft_dat=%3Cacs_swepu%3Eh13634420%3C/acs_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a360t-c1ec904b6f48caf89859f148b541b0ce8159395558366d02e71bc062c98287cc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true