Loading…

“Double-Cable” Conjugated Polymers with Linear Backbone toward High Quantum Efficiencies in Single-Component Polymer Solar Cells

A series of “double-cable” conjugated polymers were developed for application in efficient single-component polymer solar cells, in which high quantum efficiencies could be achieved due to the optimized nanophase separation between donor and acceptor parts. The new double-cable polymers contain elec...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Chemical Society 2017-12, Vol.139 (51), p.18647-18656
Main Authors: Feng, Guitao, Li, Junyu, Colberts, Fallon J. M, Li, Mengmeng, Zhang, Jianqi, Yang, Fan, Jin, Yingzhi, Zhang, Fengling, Janssen, René A. J, Li, Cheng, Li, Weiwei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a470t-ed337d4ba043462248bf6d4f49994ca6f7583f58588da39418a36ff36a2ad66f3
cites cdi_FETCH-LOGICAL-a470t-ed337d4ba043462248bf6d4f49994ca6f7583f58588da39418a36ff36a2ad66f3
container_end_page 18656
container_issue 51
container_start_page 18647
container_title Journal of the American Chemical Society
container_volume 139
creator Feng, Guitao
Li, Junyu
Colberts, Fallon J. M
Li, Mengmeng
Zhang, Jianqi
Yang, Fan
Jin, Yingzhi
Zhang, Fengling
Janssen, René A. J
Li, Cheng
Li, Weiwei
description A series of “double-cable” conjugated polymers were developed for application in efficient single-component polymer solar cells, in which high quantum efficiencies could be achieved due to the optimized nanophase separation between donor and acceptor parts. The new double-cable polymers contain electron-donating poly­(benzo­dithiophene) (BDT) as linear conjugated backbone for hole transport and pendant electron-deficient perylene bisimide (PBI) units for electron transport, connected via a dodecyl linker. Sulfur and fluorine substituents were introduced to tune the energy levels and crystallinity of the conjugated polymers. The double-cable polymers adopt a “face-on” orientation in which the conjugated BDT backbone and the pendant PBI units have a preferential π–π stacking direction perpendicular to the substrate, favorable for interchain charge transport normal to the plane. The linear conjugated backbone acts as a scaffold for the crystallization of the PBI groups, to provide a double-cable nanophase separation of donor and acceptor phases. The optimized nanophase separation enables efficient exciton dissociation as well as charge transport as evidenced from the highup to 80%internal quantum efficiency for photon-to-electron conversion. In single-component organic solar cells, the double-cable polymers provide power conversion efficiency up to 4.18%. This is one of the highest performances in single-component organic solar cells. The nanophase-separated design can likely be used to achieve high-performance single-component organic solar cells.
doi_str_mv 10.1021/jacs.7b10499
format article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_liu_144262</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2116904484</sourcerecordid><originalsourceid>FETCH-LOGICAL-a470t-ed337d4ba043462248bf6d4f49994ca6f7583f58588da39418a36ff36a2ad66f3</originalsourceid><addsrcrecordid>eNqFkU9vFCEYh4nR2LV682w4enAq_4aBY51Wa7KJmqpXwszAlnUGtjBk01sPfgz9cv0kstltvZh4AELyvA8v7w-AlxidYETw27Xu00nTYcSkfAQWuCaoqjHhj8ECIUSqRnB6BJ6ltC5XRgR-Co6IxFIyQhbg593tr7OQu9FUrS773e1v2Aa_zis9mwF-DuPNZGKCWzdfwaXzRkf4Tvc_uuANnMNWxwFeuNUV_JK1n_MEz611vTO-rASdh5fOr3byMG1KiZ_vlfAyjMXVmnFMz8ETq8dkXhzOY_Dt_fnX9qJafvrwsT1dVpo1aK7MQGkzsE4jRhknhInO8oHZ8nHJes1tUwtqa1ELMWgqGRaacmsp10QPnFt6DKq9N23NJndqE92k440K2qkz9_1UhbhSo8sKM0Y4KfzrPb-J4TqbNKvJpb50rL0JOSmCMZeIMcH-i2LZEFrGT1BB3-zRPoaUorEPfWCkdpGqXaTqEGnBXx3MuZvM8ADfZ_j36V3VOuToywz_7foDhousWA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1972304220</pqid></control><display><type>article</type><title>“Double-Cable” Conjugated Polymers with Linear Backbone toward High Quantum Efficiencies in Single-Component Polymer Solar Cells</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Feng, Guitao ; Li, Junyu ; Colberts, Fallon J. M ; Li, Mengmeng ; Zhang, Jianqi ; Yang, Fan ; Jin, Yingzhi ; Zhang, Fengling ; Janssen, René A. J ; Li, Cheng ; Li, Weiwei</creator><creatorcontrib>Feng, Guitao ; Li, Junyu ; Colberts, Fallon J. M ; Li, Mengmeng ; Zhang, Jianqi ; Yang, Fan ; Jin, Yingzhi ; Zhang, Fengling ; Janssen, René A. J ; Li, Cheng ; Li, Weiwei</creatorcontrib><description>A series of “double-cable” conjugated polymers were developed for application in efficient single-component polymer solar cells, in which high quantum efficiencies could be achieved due to the optimized nanophase separation between donor and acceptor parts. The new double-cable polymers contain electron-donating poly­(benzo­dithiophene) (BDT) as linear conjugated backbone for hole transport and pendant electron-deficient perylene bisimide (PBI) units for electron transport, connected via a dodecyl linker. Sulfur and fluorine substituents were introduced to tune the energy levels and crystallinity of the conjugated polymers. The double-cable polymers adopt a “face-on” orientation in which the conjugated BDT backbone and the pendant PBI units have a preferential π–π stacking direction perpendicular to the substrate, favorable for interchain charge transport normal to the plane. The linear conjugated backbone acts as a scaffold for the crystallization of the PBI groups, to provide a double-cable nanophase separation of donor and acceptor phases. The optimized nanophase separation enables efficient exciton dissociation as well as charge transport as evidenced from the highup to 80%internal quantum efficiency for photon-to-electron conversion. In single-component organic solar cells, the double-cable polymers provide power conversion efficiency up to 4.18%. This is one of the highest performances in single-component organic solar cells. The nanophase-separated design can likely be used to achieve high-performance single-component organic solar cells.</description><identifier>ISSN: 0002-7863</identifier><identifier>ISSN: 1520-5126</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.7b10499</identifier><identifier>PMID: 29199422</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>crystal structure ; crystallization ; dissociation ; electron transfer ; energy ; fluorine ; polymers ; solar cells ; sulfur</subject><ispartof>Journal of the American Chemical Society, 2017-12, Vol.139 (51), p.18647-18656</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a470t-ed337d4ba043462248bf6d4f49994ca6f7583f58588da39418a36ff36a2ad66f3</citedby><cites>FETCH-LOGICAL-a470t-ed337d4ba043462248bf6d4f49994ca6f7583f58588da39418a36ff36a2ad66f3</cites><orcidid>0000-0002-7329-4236 ; 0000-0002-1920-5124 ; 0000-0001-9377-9049</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29199422$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-144262$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Feng, Guitao</creatorcontrib><creatorcontrib>Li, Junyu</creatorcontrib><creatorcontrib>Colberts, Fallon J. M</creatorcontrib><creatorcontrib>Li, Mengmeng</creatorcontrib><creatorcontrib>Zhang, Jianqi</creatorcontrib><creatorcontrib>Yang, Fan</creatorcontrib><creatorcontrib>Jin, Yingzhi</creatorcontrib><creatorcontrib>Zhang, Fengling</creatorcontrib><creatorcontrib>Janssen, René A. J</creatorcontrib><creatorcontrib>Li, Cheng</creatorcontrib><creatorcontrib>Li, Weiwei</creatorcontrib><title>“Double-Cable” Conjugated Polymers with Linear Backbone toward High Quantum Efficiencies in Single-Component Polymer Solar Cells</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>A series of “double-cable” conjugated polymers were developed for application in efficient single-component polymer solar cells, in which high quantum efficiencies could be achieved due to the optimized nanophase separation between donor and acceptor parts. The new double-cable polymers contain electron-donating poly­(benzo­dithiophene) (BDT) as linear conjugated backbone for hole transport and pendant electron-deficient perylene bisimide (PBI) units for electron transport, connected via a dodecyl linker. Sulfur and fluorine substituents were introduced to tune the energy levels and crystallinity of the conjugated polymers. The double-cable polymers adopt a “face-on” orientation in which the conjugated BDT backbone and the pendant PBI units have a preferential π–π stacking direction perpendicular to the substrate, favorable for interchain charge transport normal to the plane. The linear conjugated backbone acts as a scaffold for the crystallization of the PBI groups, to provide a double-cable nanophase separation of donor and acceptor phases. The optimized nanophase separation enables efficient exciton dissociation as well as charge transport as evidenced from the highup to 80%internal quantum efficiency for photon-to-electron conversion. In single-component organic solar cells, the double-cable polymers provide power conversion efficiency up to 4.18%. This is one of the highest performances in single-component organic solar cells. The nanophase-separated design can likely be used to achieve high-performance single-component organic solar cells.</description><subject>crystal structure</subject><subject>crystallization</subject><subject>dissociation</subject><subject>electron transfer</subject><subject>energy</subject><subject>fluorine</subject><subject>polymers</subject><subject>solar cells</subject><subject>sulfur</subject><issn>0002-7863</issn><issn>1520-5126</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkU9vFCEYh4nR2LV682w4enAq_4aBY51Wa7KJmqpXwszAlnUGtjBk01sPfgz9cv0kstltvZh4AELyvA8v7w-AlxidYETw27Xu00nTYcSkfAQWuCaoqjHhj8ECIUSqRnB6BJ6ltC5XRgR-Co6IxFIyQhbg593tr7OQu9FUrS773e1v2Aa_zis9mwF-DuPNZGKCWzdfwaXzRkf4Tvc_uuANnMNWxwFeuNUV_JK1n_MEz611vTO-rASdh5fOr3byMG1KiZ_vlfAyjMXVmnFMz8ETq8dkXhzOY_Dt_fnX9qJafvrwsT1dVpo1aK7MQGkzsE4jRhknhInO8oHZ8nHJes1tUwtqa1ELMWgqGRaacmsp10QPnFt6DKq9N23NJndqE92k440K2qkz9_1UhbhSo8sKM0Y4KfzrPb-J4TqbNKvJpb50rL0JOSmCMZeIMcH-i2LZEFrGT1BB3-zRPoaUorEPfWCkdpGqXaTqEGnBXx3MuZvM8ADfZ_j36V3VOuToywz_7foDhousWA</recordid><startdate>20171227</startdate><enddate>20171227</enddate><creator>Feng, Guitao</creator><creator>Li, Junyu</creator><creator>Colberts, Fallon J. M</creator><creator>Li, Mengmeng</creator><creator>Zhang, Jianqi</creator><creator>Yang, Fan</creator><creator>Jin, Yingzhi</creator><creator>Zhang, Fengling</creator><creator>Janssen, René A. J</creator><creator>Li, Cheng</creator><creator>Li, Weiwei</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>ABXSW</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>DG8</scope><scope>ZZAVC</scope><orcidid>https://orcid.org/0000-0002-7329-4236</orcidid><orcidid>https://orcid.org/0000-0002-1920-5124</orcidid><orcidid>https://orcid.org/0000-0001-9377-9049</orcidid></search><sort><creationdate>20171227</creationdate><title>“Double-Cable” Conjugated Polymers with Linear Backbone toward High Quantum Efficiencies in Single-Component Polymer Solar Cells</title><author>Feng, Guitao ; Li, Junyu ; Colberts, Fallon J. M ; Li, Mengmeng ; Zhang, Jianqi ; Yang, Fan ; Jin, Yingzhi ; Zhang, Fengling ; Janssen, René A. J ; Li, Cheng ; Li, Weiwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a470t-ed337d4ba043462248bf6d4f49994ca6f7583f58588da39418a36ff36a2ad66f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>crystal structure</topic><topic>crystallization</topic><topic>dissociation</topic><topic>electron transfer</topic><topic>energy</topic><topic>fluorine</topic><topic>polymers</topic><topic>solar cells</topic><topic>sulfur</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feng, Guitao</creatorcontrib><creatorcontrib>Li, Junyu</creatorcontrib><creatorcontrib>Colberts, Fallon J. M</creatorcontrib><creatorcontrib>Li, Mengmeng</creatorcontrib><creatorcontrib>Zhang, Jianqi</creatorcontrib><creatorcontrib>Yang, Fan</creatorcontrib><creatorcontrib>Jin, Yingzhi</creatorcontrib><creatorcontrib>Zhang, Fengling</creatorcontrib><creatorcontrib>Janssen, René A. J</creatorcontrib><creatorcontrib>Li, Cheng</creatorcontrib><creatorcontrib>Li, Weiwei</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>SWEPUB Linköpings universitet full text</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Linköpings universitet</collection><collection>SwePub Articles full text</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feng, Guitao</au><au>Li, Junyu</au><au>Colberts, Fallon J. M</au><au>Li, Mengmeng</au><au>Zhang, Jianqi</au><au>Yang, Fan</au><au>Jin, Yingzhi</au><au>Zhang, Fengling</au><au>Janssen, René A. J</au><au>Li, Cheng</au><au>Li, Weiwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>“Double-Cable” Conjugated Polymers with Linear Backbone toward High Quantum Efficiencies in Single-Component Polymer Solar Cells</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2017-12-27</date><risdate>2017</risdate><volume>139</volume><issue>51</issue><spage>18647</spage><epage>18656</epage><pages>18647-18656</pages><issn>0002-7863</issn><issn>1520-5126</issn><eissn>1520-5126</eissn><abstract>A series of “double-cable” conjugated polymers were developed for application in efficient single-component polymer solar cells, in which high quantum efficiencies could be achieved due to the optimized nanophase separation between donor and acceptor parts. The new double-cable polymers contain electron-donating poly­(benzo­dithiophene) (BDT) as linear conjugated backbone for hole transport and pendant electron-deficient perylene bisimide (PBI) units for electron transport, connected via a dodecyl linker. Sulfur and fluorine substituents were introduced to tune the energy levels and crystallinity of the conjugated polymers. The double-cable polymers adopt a “face-on” orientation in which the conjugated BDT backbone and the pendant PBI units have a preferential π–π stacking direction perpendicular to the substrate, favorable for interchain charge transport normal to the plane. The linear conjugated backbone acts as a scaffold for the crystallization of the PBI groups, to provide a double-cable nanophase separation of donor and acceptor phases. The optimized nanophase separation enables efficient exciton dissociation as well as charge transport as evidenced from the highup to 80%internal quantum efficiency for photon-to-electron conversion. In single-component organic solar cells, the double-cable polymers provide power conversion efficiency up to 4.18%. This is one of the highest performances in single-component organic solar cells. The nanophase-separated design can likely be used to achieve high-performance single-component organic solar cells.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29199422</pmid><doi>10.1021/jacs.7b10499</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-7329-4236</orcidid><orcidid>https://orcid.org/0000-0002-1920-5124</orcidid><orcidid>https://orcid.org/0000-0001-9377-9049</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2017-12, Vol.139 (51), p.18647-18656
issn 0002-7863
1520-5126
1520-5126
language eng
recordid cdi_swepub_primary_oai_DiVA_org_liu_144262
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects crystal structure
crystallization
dissociation
electron transfer
energy
fluorine
polymers
solar cells
sulfur
title “Double-Cable” Conjugated Polymers with Linear Backbone toward High Quantum Efficiencies in Single-Component Polymer Solar Cells
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T00%3A50%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=%E2%80%9CDouble-Cable%E2%80%9D%20Conjugated%20Polymers%20with%20Linear%20Backbone%20toward%20High%20Quantum%20Efficiencies%20in%20Single-Component%20Polymer%20Solar%20Cells&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Feng,%20Guitao&rft.date=2017-12-27&rft.volume=139&rft.issue=51&rft.spage=18647&rft.epage=18656&rft.pages=18647-18656&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.7b10499&rft_dat=%3Cproquest_swepu%3E2116904484%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a470t-ed337d4ba043462248bf6d4f49994ca6f7583f58588da39418a36ff36a2ad66f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1972304220&rft_id=info:pmid/29199422&rfr_iscdi=true