Loading…

Sensor array optimization using variable selection and a Scanning Light Pulse Technique

In the design of a chemical sensor, the constructor has several degrees of freedom setting parameters that influence the final characteristics of the component. For applications where several sensors are required, the number of possible parameter configurations increases dramatically. The work of co...

Full description

Saved in:
Bibliographic Details
Published in:Sensors and actuators. B, Chemical Chemical, 2009-11, Vol.142 (2), p.435-445
Main Authors: Petersson, Henrik, Klingvall, Roger, Holmberg, Martin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c365t-1e6d75d38c0b5c10003cec2cd32b288da4117dbc00fdf7d6906933edcdedede93
cites cdi_FETCH-LOGICAL-c365t-1e6d75d38c0b5c10003cec2cd32b288da4117dbc00fdf7d6906933edcdedede93
container_end_page 445
container_issue 2
container_start_page 435
container_title Sensors and actuators. B, Chemical
container_volume 142
creator Petersson, Henrik
Klingvall, Roger
Holmberg, Martin
description In the design of a chemical sensor, the constructor has several degrees of freedom setting parameters that influence the final characteristics of the component. For applications where several sensors are required, the number of possible parameter configurations increases dramatically. The work of configuring a sensor array is therefore tedious and many test sensors may need to be processed before a final configuration is found. The Scanning Light Pulse Technique (SLPT) is a technique for investigating insulator–semiconductor interfaces and can be used to scan surfaces with non-uniform properties. Thereby a ‘virtual’ pool of test components can be evaluated simultaneously eliminating the need for processing individual test sensors. We report here on a method combining SLPT with algorithmic sensor selection techniques. This is a powerful combination providing the user with a candidate array configuration containing combinations of sensors optimal for the current application and data analysis algorithms. The need to process many individual test sensors is eliminated and the only sensor components that must be produced are those included in the final array. The selection techniques evaluated here are based on forward selection and Asymmetric Class Projection (ACP), Canonical Correlation Analysis (CCA), Linear Discriminant Analysis (LDA), and Mutual Information (MI). The suggested method is successfully evaluated using an experiment in which the purpose was to find means to detect small amounts of hydrogen in a background dominated by an interfering gas, in this case ammonia. In this particular study, the selection techniques based on ACP and CCA showed the most promising result.
doi_str_mv 10.1016/j.snb.2009.04.029
format article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_liu_14870</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925400509003621</els_id><sourcerecordid>35048767</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-1e6d75d38c0b5c10003cec2cd32b288da4117dbc00fdf7d6906933edcdedede93</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_wFtOntx1stlPPInfUFCw6jFkk2lN2SY12a3orze14lFyGMg87zDzEHLMIGXAyrNFGmybZgBNCnkKWbNDRqyueMKhqnbJCJqsSHKAYp8chLAAgJyXMCKvT2iD81R6Lz-pW_Vmab5kb5ylQzB2TtfSG9l2SAN2qH4a0moq6ZOS1m6IiZm_9fRx6ALSKao3a94HPCR7Mxl_jn7rmDzfXE8v75LJw-395cUkUbws-oRhqatC81pBWygW1-IKVaY0z9qsrrXMGat0qwBmelbpsoGy4Ry10rh5DR-T0-3c8IGroRUrb5bSfwonjbgyLxfC-bnozCBYXlcQ8ZMtvvIubhl6sTRBYddJi24IghcQubKKINuCyrsQPM7-JjMQG-NiIaJxsTEuIBfReMycbzMYD14b9CIog1ahNj6qE9qZf9Lfe7SLWw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>35048767</pqid></control><display><type>article</type><title>Sensor array optimization using variable selection and a Scanning Light Pulse Technique</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Petersson, Henrik ; Klingvall, Roger ; Holmberg, Martin</creator><creatorcontrib>Petersson, Henrik ; Klingvall, Roger ; Holmberg, Martin</creatorcontrib><description>In the design of a chemical sensor, the constructor has several degrees of freedom setting parameters that influence the final characteristics of the component. For applications where several sensors are required, the number of possible parameter configurations increases dramatically. The work of configuring a sensor array is therefore tedious and many test sensors may need to be processed before a final configuration is found. The Scanning Light Pulse Technique (SLPT) is a technique for investigating insulator–semiconductor interfaces and can be used to scan surfaces with non-uniform properties. Thereby a ‘virtual’ pool of test components can be evaluated simultaneously eliminating the need for processing individual test sensors. We report here on a method combining SLPT with algorithmic sensor selection techniques. This is a powerful combination providing the user with a candidate array configuration containing combinations of sensors optimal for the current application and data analysis algorithms. The need to process many individual test sensors is eliminated and the only sensor components that must be produced are those included in the final array. The selection techniques evaluated here are based on forward selection and Asymmetric Class Projection (ACP), Canonical Correlation Analysis (CCA), Linear Discriminant Analysis (LDA), and Mutual Information (MI). The suggested method is successfully evaluated using an experiment in which the purpose was to find means to detect small amounts of hydrogen in a background dominated by an interfering gas, in this case ammonia. In this particular study, the selection techniques based on ACP and CCA showed the most promising result.</description><identifier>ISSN: 0925-4005</identifier><identifier>ISSN: 1873-3077</identifier><identifier>EISSN: 1873-3077</identifier><identifier>DOI: 10.1016/j.snb.2009.04.029</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Assymetric Class Projection ; CCA ; Chemical engineering ; Chemical sensor ; Forward selection ; Kemiteknik ; LDA ; MIS ; Mutual Information ; Sensor selection ; SLPT ; TECHNOLOGY ; TEKNIKVETENSKAP</subject><ispartof>Sensors and actuators. B, Chemical, 2009-11, Vol.142 (2), p.435-445</ispartof><rights>2009 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-1e6d75d38c0b5c10003cec2cd32b288da4117dbc00fdf7d6906933edcdedede93</citedby><cites>FETCH-LOGICAL-c365t-1e6d75d38c0b5c10003cec2cd32b288da4117dbc00fdf7d6906933edcdedede93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-14870$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Petersson, Henrik</creatorcontrib><creatorcontrib>Klingvall, Roger</creatorcontrib><creatorcontrib>Holmberg, Martin</creatorcontrib><title>Sensor array optimization using variable selection and a Scanning Light Pulse Technique</title><title>Sensors and actuators. B, Chemical</title><description>In the design of a chemical sensor, the constructor has several degrees of freedom setting parameters that influence the final characteristics of the component. For applications where several sensors are required, the number of possible parameter configurations increases dramatically. The work of configuring a sensor array is therefore tedious and many test sensors may need to be processed before a final configuration is found. The Scanning Light Pulse Technique (SLPT) is a technique for investigating insulator–semiconductor interfaces and can be used to scan surfaces with non-uniform properties. Thereby a ‘virtual’ pool of test components can be evaluated simultaneously eliminating the need for processing individual test sensors. We report here on a method combining SLPT with algorithmic sensor selection techniques. This is a powerful combination providing the user with a candidate array configuration containing combinations of sensors optimal for the current application and data analysis algorithms. The need to process many individual test sensors is eliminated and the only sensor components that must be produced are those included in the final array. The selection techniques evaluated here are based on forward selection and Asymmetric Class Projection (ACP), Canonical Correlation Analysis (CCA), Linear Discriminant Analysis (LDA), and Mutual Information (MI). The suggested method is successfully evaluated using an experiment in which the purpose was to find means to detect small amounts of hydrogen in a background dominated by an interfering gas, in this case ammonia. In this particular study, the selection techniques based on ACP and CCA showed the most promising result.</description><subject>Assymetric Class Projection</subject><subject>CCA</subject><subject>Chemical engineering</subject><subject>Chemical sensor</subject><subject>Forward selection</subject><subject>Kemiteknik</subject><subject>LDA</subject><subject>MIS</subject><subject>Mutual Information</subject><subject>Sensor selection</subject><subject>SLPT</subject><subject>TECHNOLOGY</subject><subject>TEKNIKVETENSKAP</subject><issn>0925-4005</issn><issn>1873-3077</issn><issn>1873-3077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKs_wFtOntx1stlPPInfUFCw6jFkk2lN2SY12a3orze14lFyGMg87zDzEHLMIGXAyrNFGmybZgBNCnkKWbNDRqyueMKhqnbJCJqsSHKAYp8chLAAgJyXMCKvT2iD81R6Lz-pW_Vmab5kb5ylQzB2TtfSG9l2SAN2qH4a0moq6ZOS1m6IiZm_9fRx6ALSKao3a94HPCR7Mxl_jn7rmDzfXE8v75LJw-395cUkUbws-oRhqatC81pBWygW1-IKVaY0z9qsrrXMGat0qwBmelbpsoGy4Ry10rh5DR-T0-3c8IGroRUrb5bSfwonjbgyLxfC-bnozCBYXlcQ8ZMtvvIubhl6sTRBYddJi24IghcQubKKINuCyrsQPM7-JjMQG-NiIaJxsTEuIBfReMycbzMYD14b9CIog1ahNj6qE9qZf9Lfe7SLWw</recordid><startdate>20091105</startdate><enddate>20091105</enddate><creator>Petersson, Henrik</creator><creator>Klingvall, Roger</creator><creator>Holmberg, Martin</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>DG8</scope></search><sort><creationdate>20091105</creationdate><title>Sensor array optimization using variable selection and a Scanning Light Pulse Technique</title><author>Petersson, Henrik ; Klingvall, Roger ; Holmberg, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-1e6d75d38c0b5c10003cec2cd32b288da4117dbc00fdf7d6906933edcdedede93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Assymetric Class Projection</topic><topic>CCA</topic><topic>Chemical engineering</topic><topic>Chemical sensor</topic><topic>Forward selection</topic><topic>Kemiteknik</topic><topic>LDA</topic><topic>MIS</topic><topic>Mutual Information</topic><topic>Sensor selection</topic><topic>SLPT</topic><topic>TECHNOLOGY</topic><topic>TEKNIKVETENSKAP</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Petersson, Henrik</creatorcontrib><creatorcontrib>Klingvall, Roger</creatorcontrib><creatorcontrib>Holmberg, Martin</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Linköpings universitet</collection><jtitle>Sensors and actuators. B, Chemical</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Petersson, Henrik</au><au>Klingvall, Roger</au><au>Holmberg, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sensor array optimization using variable selection and a Scanning Light Pulse Technique</atitle><jtitle>Sensors and actuators. B, Chemical</jtitle><date>2009-11-05</date><risdate>2009</risdate><volume>142</volume><issue>2</issue><spage>435</spage><epage>445</epage><pages>435-445</pages><issn>0925-4005</issn><issn>1873-3077</issn><eissn>1873-3077</eissn><abstract>In the design of a chemical sensor, the constructor has several degrees of freedom setting parameters that influence the final characteristics of the component. For applications where several sensors are required, the number of possible parameter configurations increases dramatically. The work of configuring a sensor array is therefore tedious and many test sensors may need to be processed before a final configuration is found. The Scanning Light Pulse Technique (SLPT) is a technique for investigating insulator–semiconductor interfaces and can be used to scan surfaces with non-uniform properties. Thereby a ‘virtual’ pool of test components can be evaluated simultaneously eliminating the need for processing individual test sensors. We report here on a method combining SLPT with algorithmic sensor selection techniques. This is a powerful combination providing the user with a candidate array configuration containing combinations of sensors optimal for the current application and data analysis algorithms. The need to process many individual test sensors is eliminated and the only sensor components that must be produced are those included in the final array. The selection techniques evaluated here are based on forward selection and Asymmetric Class Projection (ACP), Canonical Correlation Analysis (CCA), Linear Discriminant Analysis (LDA), and Mutual Information (MI). The suggested method is successfully evaluated using an experiment in which the purpose was to find means to detect small amounts of hydrogen in a background dominated by an interfering gas, in this case ammonia. In this particular study, the selection techniques based on ACP and CCA showed the most promising result.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.snb.2009.04.029</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0925-4005
ispartof Sensors and actuators. B, Chemical, 2009-11, Vol.142 (2), p.435-445
issn 0925-4005
1873-3077
1873-3077
language eng
recordid cdi_swepub_primary_oai_DiVA_org_liu_14870
source ScienceDirect Freedom Collection 2022-2024
subjects Assymetric Class Projection
CCA
Chemical engineering
Chemical sensor
Forward selection
Kemiteknik
LDA
MIS
Mutual Information
Sensor selection
SLPT
TECHNOLOGY
TEKNIKVETENSKAP
title Sensor array optimization using variable selection and a Scanning Light Pulse Technique
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T00%3A16%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sensor%20array%20optimization%20using%20variable%20selection%20and%20a%20Scanning%20Light%20Pulse%20Technique&rft.jtitle=Sensors%20and%20actuators.%20B,%20Chemical&rft.au=Petersson,%20Henrik&rft.date=2009-11-05&rft.volume=142&rft.issue=2&rft.spage=435&rft.epage=445&rft.pages=435-445&rft.issn=0925-4005&rft.eissn=1873-3077&rft_id=info:doi/10.1016/j.snb.2009.04.029&rft_dat=%3Cproquest_swepu%3E35048767%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c365t-1e6d75d38c0b5c10003cec2cd32b288da4117dbc00fdf7d6906933edcdedede93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=35048767&rft_id=info:pmid/&rfr_iscdi=true