Loading…
Algebraic Method for Group Classification of (1+1)-Dimensional Linear Schrödinger Equations
We carry out the complete group classification of the class of (1+1)-dimensional linear Schrödinger equations with complex-valued potentials. After introducing the notion of uniformly semi-normalized classes of differential equations, we compute the equivalence groupoid of the class under study and...
Saved in:
Published in: | Acta applicandae mathematicae 2018-10, Vol.157 (1), p.171-203 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c354t-221adb8960b05198b6b37037e1d130fea020d2ef19a6a7fb1b95a2ca1b5ada63 |
---|---|
cites | cdi_FETCH-LOGICAL-c354t-221adb8960b05198b6b37037e1d130fea020d2ef19a6a7fb1b95a2ca1b5ada63 |
container_end_page | 203 |
container_issue | 1 |
container_start_page | 171 |
container_title | Acta applicandae mathematicae |
container_volume | 157 |
creator | Kurujyibwami, Célestin Basarab-Horwath, Peter Popovych, Roman O. |
description | We carry out the complete group classification of the class of (1+1)-dimensional linear Schrödinger equations with complex-valued potentials. After introducing the notion of uniformly semi-normalized classes of differential equations, we compute the equivalence groupoid of the class under study and show that it is uniformly semi-normalized. More specifically, each admissible transformation in the class is the composition of a linear superposition transformation of the corresponding initial equation and an equivalence transformation of this class. This allows us to apply the new version of the algebraic method based on uniform semi-normalization and reduce the group classification of the class under study to the classification of low-dimensional appropriate subalgebras of the associated equivalence algebra. The partition into classification cases involves two integers that characterize Lie symmetry extensions and are invariant with respect to equivalence transformations. |
doi_str_mv | 10.1007/s10440-018-0169-y |
format | article |
fullrecord | <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_liu_151473</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2011368441</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-221adb8960b05198b6b37037e1d130fea020d2ef19a6a7fb1b95a2ca1b5ada63</originalsourceid><addsrcrecordid>eNp1kMtKAzEUhoMoWC8P4C7gRpHoOZOZzMyytPUCFRcWV0JIZjI1Mm3apIP0xXwBX8zUFl25OAQO3_9z8hFyhnCNAPlNQEhTYIBFHFGy9R7pYZYnrAQu9kkvLnNWAJaH5CiEdwDgpRA98tpvp0Z7ZSv6aFZvrqaN8_TOu25BB60KwTa2Uivr5tQ19AKv8JIN7czMQ1yplo7t3ChPn6s3__VZ2_nUeDpadj-JcEIOGtUGc7p7j8nkdjQZ3LPx093DoD9mFc_SFUsSVLUuSgEaMiwLLTTPgecGa-TQGAUJ1IlpsFRC5Y1GXWYqqRTqTNVK8GPCtrXhwyw6LRfezpRfS6esHNqXvnR-KlvbScwwzXnkz7f8wrtlZ8JKvrvOx98EmQAiF0WaYqRwS1XeheBN89uLIDfO5da5jM7lxrlcx0yyuySyGxd_zf-HvgED44UY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2011368441</pqid></control><display><type>article</type><title>Algebraic Method for Group Classification of (1+1)-Dimensional Linear Schrödinger Equations</title><source>ABI/INFORM Global</source><source>Springer Link</source><creator>Kurujyibwami, Célestin ; Basarab-Horwath, Peter ; Popovych, Roman O.</creator><creatorcontrib>Kurujyibwami, Célestin ; Basarab-Horwath, Peter ; Popovych, Roman O.</creatorcontrib><description>We carry out the complete group classification of the class of (1+1)-dimensional linear Schrödinger equations with complex-valued potentials. After introducing the notion of uniformly semi-normalized classes of differential equations, we compute the equivalence groupoid of the class under study and show that it is uniformly semi-normalized. More specifically, each admissible transformation in the class is the composition of a linear superposition transformation of the corresponding initial equation and an equivalence transformation of this class. This allows us to apply the new version of the algebraic method based on uniform semi-normalization and reduce the group classification of the class under study to the classification of low-dimensional appropriate subalgebras of the associated equivalence algebra. The partition into classification cases involves two integers that characterize Lie symmetry extensions and are invariant with respect to equivalence transformations.</description><identifier>ISSN: 0167-8019</identifier><identifier>ISSN: 1572-9036</identifier><identifier>EISSN: 1572-9036</identifier><identifier>DOI: 10.1007/s10440-018-0169-y</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Algebra ; Applications of Mathematics ; Calculus of Variations and Optimal Control; Optimization ; Classification ; Computational Mathematics and Numerical Analysis ; Differential equations ; Equivalence ; Group theory ; Integers ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Partial Differential Equations ; Probability Theory and Stochastic Processes ; Schrodinger equation ; Superposition (mathematics) ; Transformations (mathematics)</subject><ispartof>Acta applicandae mathematicae, 2018-10, Vol.157 (1), p.171-203</ispartof><rights>Springer Science+Business Media B.V., part of Springer Nature 2018</rights><rights>Acta Applicandae Mathematicae is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-221adb8960b05198b6b37037e1d130fea020d2ef19a6a7fb1b95a2ca1b5ada63</citedby><cites>FETCH-LOGICAL-c354t-221adb8960b05198b6b37037e1d130fea020d2ef19a6a7fb1b95a2ca1b5ada63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2011368441/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2011368441?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>230,314,780,784,885,11688,27924,27925,36060,44363,74895</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-151473$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Kurujyibwami, Célestin</creatorcontrib><creatorcontrib>Basarab-Horwath, Peter</creatorcontrib><creatorcontrib>Popovych, Roman O.</creatorcontrib><title>Algebraic Method for Group Classification of (1+1)-Dimensional Linear Schrödinger Equations</title><title>Acta applicandae mathematicae</title><addtitle>Acta Appl Math</addtitle><description>We carry out the complete group classification of the class of (1+1)-dimensional linear Schrödinger equations with complex-valued potentials. After introducing the notion of uniformly semi-normalized classes of differential equations, we compute the equivalence groupoid of the class under study and show that it is uniformly semi-normalized. More specifically, each admissible transformation in the class is the composition of a linear superposition transformation of the corresponding initial equation and an equivalence transformation of this class. This allows us to apply the new version of the algebraic method based on uniform semi-normalization and reduce the group classification of the class under study to the classification of low-dimensional appropriate subalgebras of the associated equivalence algebra. The partition into classification cases involves two integers that characterize Lie symmetry extensions and are invariant with respect to equivalence transformations.</description><subject>Algebra</subject><subject>Applications of Mathematics</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Classification</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Differential equations</subject><subject>Equivalence</subject><subject>Group theory</subject><subject>Integers</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Partial Differential Equations</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Schrodinger equation</subject><subject>Superposition (mathematics)</subject><subject>Transformations (mathematics)</subject><issn>0167-8019</issn><issn>1572-9036</issn><issn>1572-9036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp1kMtKAzEUhoMoWC8P4C7gRpHoOZOZzMyytPUCFRcWV0JIZjI1Mm3apIP0xXwBX8zUFl25OAQO3_9z8hFyhnCNAPlNQEhTYIBFHFGy9R7pYZYnrAQu9kkvLnNWAJaH5CiEdwDgpRA98tpvp0Z7ZSv6aFZvrqaN8_TOu25BB60KwTa2Uivr5tQ19AKv8JIN7czMQ1yplo7t3ChPn6s3__VZ2_nUeDpadj-JcEIOGtUGc7p7j8nkdjQZ3LPx093DoD9mFc_SFUsSVLUuSgEaMiwLLTTPgecGa-TQGAUJ1IlpsFRC5Y1GXWYqqRTqTNVK8GPCtrXhwyw6LRfezpRfS6esHNqXvnR-KlvbScwwzXnkz7f8wrtlZ8JKvrvOx98EmQAiF0WaYqRwS1XeheBN89uLIDfO5da5jM7lxrlcx0yyuySyGxd_zf-HvgED44UY</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Kurujyibwami, Célestin</creator><creator>Basarab-Horwath, Peter</creator><creator>Popovych, Roman O.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>DG8</scope></search><sort><creationdate>20181001</creationdate><title>Algebraic Method for Group Classification of (1+1)-Dimensional Linear Schrödinger Equations</title><author>Kurujyibwami, Célestin ; Basarab-Horwath, Peter ; Popovych, Roman O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-221adb8960b05198b6b37037e1d130fea020d2ef19a6a7fb1b95a2ca1b5ada63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algebra</topic><topic>Applications of Mathematics</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Classification</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Differential equations</topic><topic>Equivalence</topic><topic>Group theory</topic><topic>Integers</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Partial Differential Equations</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Schrodinger equation</topic><topic>Superposition (mathematics)</topic><topic>Transformations (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kurujyibwami, Célestin</creatorcontrib><creatorcontrib>Basarab-Horwath, Peter</creatorcontrib><creatorcontrib>Popovych, Roman O.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Linköpings universitet</collection><jtitle>Acta applicandae mathematicae</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kurujyibwami, Célestin</au><au>Basarab-Horwath, Peter</au><au>Popovych, Roman O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Algebraic Method for Group Classification of (1+1)-Dimensional Linear Schrödinger Equations</atitle><jtitle>Acta applicandae mathematicae</jtitle><stitle>Acta Appl Math</stitle><date>2018-10-01</date><risdate>2018</risdate><volume>157</volume><issue>1</issue><spage>171</spage><epage>203</epage><pages>171-203</pages><issn>0167-8019</issn><issn>1572-9036</issn><eissn>1572-9036</eissn><abstract>We carry out the complete group classification of the class of (1+1)-dimensional linear Schrödinger equations with complex-valued potentials. After introducing the notion of uniformly semi-normalized classes of differential equations, we compute the equivalence groupoid of the class under study and show that it is uniformly semi-normalized. More specifically, each admissible transformation in the class is the composition of a linear superposition transformation of the corresponding initial equation and an equivalence transformation of this class. This allows us to apply the new version of the algebraic method based on uniform semi-normalization and reduce the group classification of the class under study to the classification of low-dimensional appropriate subalgebras of the associated equivalence algebra. The partition into classification cases involves two integers that characterize Lie symmetry extensions and are invariant with respect to equivalence transformations.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10440-018-0169-y</doi><tpages>33</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-8019 |
ispartof | Acta applicandae mathematicae, 2018-10, Vol.157 (1), p.171-203 |
issn | 0167-8019 1572-9036 1572-9036 |
language | eng |
recordid | cdi_swepub_primary_oai_DiVA_org_liu_151473 |
source | ABI/INFORM Global; Springer Link |
subjects | Algebra Applications of Mathematics Calculus of Variations and Optimal Control Optimization Classification Computational Mathematics and Numerical Analysis Differential equations Equivalence Group theory Integers Mathematical analysis Mathematics Mathematics and Statistics Partial Differential Equations Probability Theory and Stochastic Processes Schrodinger equation Superposition (mathematics) Transformations (mathematics) |
title | Algebraic Method for Group Classification of (1+1)-Dimensional Linear Schrödinger Equations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T08%3A46%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Algebraic%20Method%20for%20Group%20Classification%20of%20(1+1)-Dimensional%20Linear%20Schr%C3%B6dinger%20Equations&rft.jtitle=Acta%20applicandae%20mathematicae&rft.au=Kurujyibwami,%20C%C3%A9lestin&rft.date=2018-10-01&rft.volume=157&rft.issue=1&rft.spage=171&rft.epage=203&rft.pages=171-203&rft.issn=0167-8019&rft.eissn=1572-9036&rft_id=info:doi/10.1007/s10440-018-0169-y&rft_dat=%3Cproquest_swepu%3E2011368441%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c354t-221adb8960b05198b6b37037e1d130fea020d2ef19a6a7fb1b95a2ca1b5ada63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2011368441&rft_id=info:pmid/&rfr_iscdi=true |