Loading…

Algebraic Method for Group Classification of (1+1)-Dimensional Linear Schrödinger Equations

We carry out the complete group classification of the class of (1+1)-dimensional linear Schrödinger equations with complex-valued potentials. After introducing the notion of uniformly semi-normalized classes of differential equations, we compute the equivalence groupoid of the class under study and...

Full description

Saved in:
Bibliographic Details
Published in:Acta applicandae mathematicae 2018-10, Vol.157 (1), p.171-203
Main Authors: Kurujyibwami, Célestin, Basarab-Horwath, Peter, Popovych, Roman O.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c354t-221adb8960b05198b6b37037e1d130fea020d2ef19a6a7fb1b95a2ca1b5ada63
cites cdi_FETCH-LOGICAL-c354t-221adb8960b05198b6b37037e1d130fea020d2ef19a6a7fb1b95a2ca1b5ada63
container_end_page 203
container_issue 1
container_start_page 171
container_title Acta applicandae mathematicae
container_volume 157
creator Kurujyibwami, Célestin
Basarab-Horwath, Peter
Popovych, Roman O.
description We carry out the complete group classification of the class of (1+1)-dimensional linear Schrödinger equations with complex-valued potentials. After introducing the notion of uniformly semi-normalized classes of differential equations, we compute the equivalence groupoid of the class under study and show that it is uniformly semi-normalized. More specifically, each admissible transformation in the class is the composition of a linear superposition transformation of the corresponding initial equation and an equivalence transformation of this class. This allows us to apply the new version of the algebraic method based on uniform semi-normalization and reduce the group classification of the class under study to the classification of low-dimensional appropriate subalgebras of the associated equivalence algebra. The partition into classification cases involves two integers that characterize Lie symmetry extensions and are invariant with respect to equivalence transformations.
doi_str_mv 10.1007/s10440-018-0169-y
format article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_liu_151473</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2011368441</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-221adb8960b05198b6b37037e1d130fea020d2ef19a6a7fb1b95a2ca1b5ada63</originalsourceid><addsrcrecordid>eNp1kMtKAzEUhoMoWC8P4C7gRpHoOZOZzMyytPUCFRcWV0JIZjI1Mm3apIP0xXwBX8zUFl25OAQO3_9z8hFyhnCNAPlNQEhTYIBFHFGy9R7pYZYnrAQu9kkvLnNWAJaH5CiEdwDgpRA98tpvp0Z7ZSv6aFZvrqaN8_TOu25BB60KwTa2Uivr5tQ19AKv8JIN7czMQ1yplo7t3ChPn6s3__VZ2_nUeDpadj-JcEIOGtUGc7p7j8nkdjQZ3LPx093DoD9mFc_SFUsSVLUuSgEaMiwLLTTPgecGa-TQGAUJ1IlpsFRC5Y1GXWYqqRTqTNVK8GPCtrXhwyw6LRfezpRfS6esHNqXvnR-KlvbScwwzXnkz7f8wrtlZ8JKvrvOx98EmQAiF0WaYqRwS1XeheBN89uLIDfO5da5jM7lxrlcx0yyuySyGxd_zf-HvgED44UY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2011368441</pqid></control><display><type>article</type><title>Algebraic Method for Group Classification of (1+1)-Dimensional Linear Schrödinger Equations</title><source>ABI/INFORM Global</source><source>Springer Link</source><creator>Kurujyibwami, Célestin ; Basarab-Horwath, Peter ; Popovych, Roman O.</creator><creatorcontrib>Kurujyibwami, Célestin ; Basarab-Horwath, Peter ; Popovych, Roman O.</creatorcontrib><description>We carry out the complete group classification of the class of (1+1)-dimensional linear Schrödinger equations with complex-valued potentials. After introducing the notion of uniformly semi-normalized classes of differential equations, we compute the equivalence groupoid of the class under study and show that it is uniformly semi-normalized. More specifically, each admissible transformation in the class is the composition of a linear superposition transformation of the corresponding initial equation and an equivalence transformation of this class. This allows us to apply the new version of the algebraic method based on uniform semi-normalization and reduce the group classification of the class under study to the classification of low-dimensional appropriate subalgebras of the associated equivalence algebra. The partition into classification cases involves two integers that characterize Lie symmetry extensions and are invariant with respect to equivalence transformations.</description><identifier>ISSN: 0167-8019</identifier><identifier>ISSN: 1572-9036</identifier><identifier>EISSN: 1572-9036</identifier><identifier>DOI: 10.1007/s10440-018-0169-y</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Algebra ; Applications of Mathematics ; Calculus of Variations and Optimal Control; Optimization ; Classification ; Computational Mathematics and Numerical Analysis ; Differential equations ; Equivalence ; Group theory ; Integers ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Partial Differential Equations ; Probability Theory and Stochastic Processes ; Schrodinger equation ; Superposition (mathematics) ; Transformations (mathematics)</subject><ispartof>Acta applicandae mathematicae, 2018-10, Vol.157 (1), p.171-203</ispartof><rights>Springer Science+Business Media B.V., part of Springer Nature 2018</rights><rights>Acta Applicandae Mathematicae is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-221adb8960b05198b6b37037e1d130fea020d2ef19a6a7fb1b95a2ca1b5ada63</citedby><cites>FETCH-LOGICAL-c354t-221adb8960b05198b6b37037e1d130fea020d2ef19a6a7fb1b95a2ca1b5ada63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2011368441/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2011368441?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>230,314,780,784,885,11688,27924,27925,36060,44363,74895</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-151473$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Kurujyibwami, Célestin</creatorcontrib><creatorcontrib>Basarab-Horwath, Peter</creatorcontrib><creatorcontrib>Popovych, Roman O.</creatorcontrib><title>Algebraic Method for Group Classification of (1+1)-Dimensional Linear Schrödinger Equations</title><title>Acta applicandae mathematicae</title><addtitle>Acta Appl Math</addtitle><description>We carry out the complete group classification of the class of (1+1)-dimensional linear Schrödinger equations with complex-valued potentials. After introducing the notion of uniformly semi-normalized classes of differential equations, we compute the equivalence groupoid of the class under study and show that it is uniformly semi-normalized. More specifically, each admissible transformation in the class is the composition of a linear superposition transformation of the corresponding initial equation and an equivalence transformation of this class. This allows us to apply the new version of the algebraic method based on uniform semi-normalization and reduce the group classification of the class under study to the classification of low-dimensional appropriate subalgebras of the associated equivalence algebra. The partition into classification cases involves two integers that characterize Lie symmetry extensions and are invariant with respect to equivalence transformations.</description><subject>Algebra</subject><subject>Applications of Mathematics</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Classification</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Differential equations</subject><subject>Equivalence</subject><subject>Group theory</subject><subject>Integers</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Partial Differential Equations</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Schrodinger equation</subject><subject>Superposition (mathematics)</subject><subject>Transformations (mathematics)</subject><issn>0167-8019</issn><issn>1572-9036</issn><issn>1572-9036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp1kMtKAzEUhoMoWC8P4C7gRpHoOZOZzMyytPUCFRcWV0JIZjI1Mm3apIP0xXwBX8zUFl25OAQO3_9z8hFyhnCNAPlNQEhTYIBFHFGy9R7pYZYnrAQu9kkvLnNWAJaH5CiEdwDgpRA98tpvp0Z7ZSv6aFZvrqaN8_TOu25BB60KwTa2Uivr5tQ19AKv8JIN7czMQ1yplo7t3ChPn6s3__VZ2_nUeDpadj-JcEIOGtUGc7p7j8nkdjQZ3LPx093DoD9mFc_SFUsSVLUuSgEaMiwLLTTPgecGa-TQGAUJ1IlpsFRC5Y1GXWYqqRTqTNVK8GPCtrXhwyw6LRfezpRfS6esHNqXvnR-KlvbScwwzXnkz7f8wrtlZ8JKvrvOx98EmQAiF0WaYqRwS1XeheBN89uLIDfO5da5jM7lxrlcx0yyuySyGxd_zf-HvgED44UY</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Kurujyibwami, Célestin</creator><creator>Basarab-Horwath, Peter</creator><creator>Popovych, Roman O.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>DG8</scope></search><sort><creationdate>20181001</creationdate><title>Algebraic Method for Group Classification of (1+1)-Dimensional Linear Schrödinger Equations</title><author>Kurujyibwami, Célestin ; Basarab-Horwath, Peter ; Popovych, Roman O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-221adb8960b05198b6b37037e1d130fea020d2ef19a6a7fb1b95a2ca1b5ada63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algebra</topic><topic>Applications of Mathematics</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Classification</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Differential equations</topic><topic>Equivalence</topic><topic>Group theory</topic><topic>Integers</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Partial Differential Equations</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Schrodinger equation</topic><topic>Superposition (mathematics)</topic><topic>Transformations (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kurujyibwami, Célestin</creatorcontrib><creatorcontrib>Basarab-Horwath, Peter</creatorcontrib><creatorcontrib>Popovych, Roman O.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Linköpings universitet</collection><jtitle>Acta applicandae mathematicae</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kurujyibwami, Célestin</au><au>Basarab-Horwath, Peter</au><au>Popovych, Roman O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Algebraic Method for Group Classification of (1+1)-Dimensional Linear Schrödinger Equations</atitle><jtitle>Acta applicandae mathematicae</jtitle><stitle>Acta Appl Math</stitle><date>2018-10-01</date><risdate>2018</risdate><volume>157</volume><issue>1</issue><spage>171</spage><epage>203</epage><pages>171-203</pages><issn>0167-8019</issn><issn>1572-9036</issn><eissn>1572-9036</eissn><abstract>We carry out the complete group classification of the class of (1+1)-dimensional linear Schrödinger equations with complex-valued potentials. After introducing the notion of uniformly semi-normalized classes of differential equations, we compute the equivalence groupoid of the class under study and show that it is uniformly semi-normalized. More specifically, each admissible transformation in the class is the composition of a linear superposition transformation of the corresponding initial equation and an equivalence transformation of this class. This allows us to apply the new version of the algebraic method based on uniform semi-normalization and reduce the group classification of the class under study to the classification of low-dimensional appropriate subalgebras of the associated equivalence algebra. The partition into classification cases involves two integers that characterize Lie symmetry extensions and are invariant with respect to equivalence transformations.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10440-018-0169-y</doi><tpages>33</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0167-8019
ispartof Acta applicandae mathematicae, 2018-10, Vol.157 (1), p.171-203
issn 0167-8019
1572-9036
1572-9036
language eng
recordid cdi_swepub_primary_oai_DiVA_org_liu_151473
source ABI/INFORM Global; Springer Link
subjects Algebra
Applications of Mathematics
Calculus of Variations and Optimal Control
Optimization
Classification
Computational Mathematics and Numerical Analysis
Differential equations
Equivalence
Group theory
Integers
Mathematical analysis
Mathematics
Mathematics and Statistics
Partial Differential Equations
Probability Theory and Stochastic Processes
Schrodinger equation
Superposition (mathematics)
Transformations (mathematics)
title Algebraic Method for Group Classification of (1+1)-Dimensional Linear Schrödinger Equations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T08%3A46%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Algebraic%20Method%20for%20Group%20Classification%20of%20(1+1)-Dimensional%20Linear%20Schr%C3%B6dinger%20Equations&rft.jtitle=Acta%20applicandae%20mathematicae&rft.au=Kurujyibwami,%20C%C3%A9lestin&rft.date=2018-10-01&rft.volume=157&rft.issue=1&rft.spage=171&rft.epage=203&rft.pages=171-203&rft.issn=0167-8019&rft.eissn=1572-9036&rft_id=info:doi/10.1007/s10440-018-0169-y&rft_dat=%3Cproquest_swepu%3E2011368441%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c354t-221adb8960b05198b6b37037e1d130fea020d2ef19a6a7fb1b95a2ca1b5ada63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2011368441&rft_id=info:pmid/&rfr_iscdi=true