Loading…

Fuzzy weighted recurrence networks of time series Chock

The concept of networks in the context of graph theory delineates a wide variety of real-life complex systems. The theory of networks finds its applications very useful in many scientific and intellectual domains. Weighted networks can characterize complex statistical graph properties, particularly...

Full description

Saved in:
Bibliographic Details
Published in:Physica A 2019, Vol.513, p.409
Main Author: Pham, Tuan
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page 409
container_title Physica A
container_volume 513
creator Pham, Tuan
description The concept of networks in the context of graph theory delineates a wide variety of real-life complex systems. The theory of networks finds its applications very useful in many scientific and intellectual domains. Weighted networks can characterize complex statistical graph properties, particularly where node connections are heterogeneous. A framework of fuzzy weighted recurrence networks of time series is presented in this letter. Popular graph measures including the average clustering coefficient and characteristic path length of fuzzy weighted recurrence networks are shown to be more robust than those of unweighted recurrence networks derived from binary recurrence plots. (C) 2018 Elsevier B.V. All rights reserved.
doi_str_mv 10.1016/j.physa.2018.09.035
format article
fullrecord <record><control><sourceid>swepub</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_liu_152587</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_DiVA_org_liu_152587</sourcerecordid><originalsourceid>FETCH-LOGICAL-s123t-66b4d96b83e1b401fa3d48c2dd6562f89ec152e2c92936d7fbe45820c99a4d683</originalsourceid><addsrcrecordid>eNotzLtOwzAUAFAPIFEKX8DiH0jwK36MVaCAVIkFWC3HvmncVyI7UZV-PUh0OttB6ImSkhIqn3fl0M3ZlYxQXRJTEl7doAXhSheCK3qH7nPeEUKo4myB1Hq6XGZ8hrjtRgg4gZ9SgpMHfILx3Kd9xn2Lx3gEnCFFyLjuer9_QLetO2R4vLpE3-vXr_q92Hy-fdSrTZEp42MhZSOCkY3mQBtBaOt4ENqzEGQlWasNeFoxYN4ww2VQbQOi0ox4Y5wIUvMlKv7ffIZhauyQ4tGl2fYu2pf4s7J92tpDnOxfU2nFfwHOo0xO</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Fuzzy weighted recurrence networks of time series Chock</title><source>ScienceDirect Freedom Collection</source><creator>Pham, Tuan</creator><creatorcontrib>Pham, Tuan</creatorcontrib><description>The concept of networks in the context of graph theory delineates a wide variety of real-life complex systems. The theory of networks finds its applications very useful in many scientific and intellectual domains. Weighted networks can characterize complex statistical graph properties, particularly where node connections are heterogeneous. A framework of fuzzy weighted recurrence networks of time series is presented in this letter. Popular graph measures including the average clustering coefficient and characteristic path length of fuzzy weighted recurrence networks are shown to be more robust than those of unweighted recurrence networks derived from binary recurrence plots. (C) 2018 Elsevier B.V. All rights reserved.</description><identifier>ISSN: 0378-4371</identifier><identifier>ISSN: 1873-2119</identifier><identifier>DOI: 10.1016/j.physa.2018.09.035</identifier><language>eng</language><ispartof>Physica A, 2019, Vol.513, p.409</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-152587$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Pham, Tuan</creatorcontrib><title>Fuzzy weighted recurrence networks of time series Chock</title><title>Physica A</title><description>The concept of networks in the context of graph theory delineates a wide variety of real-life complex systems. The theory of networks finds its applications very useful in many scientific and intellectual domains. Weighted networks can characterize complex statistical graph properties, particularly where node connections are heterogeneous. A framework of fuzzy weighted recurrence networks of time series is presented in this letter. Popular graph measures including the average clustering coefficient and characteristic path length of fuzzy weighted recurrence networks are shown to be more robust than those of unweighted recurrence networks derived from binary recurrence plots. (C) 2018 Elsevier B.V. All rights reserved.</description><issn>0378-4371</issn><issn>1873-2119</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNotzLtOwzAUAFAPIFEKX8DiH0jwK36MVaCAVIkFWC3HvmncVyI7UZV-PUh0OttB6ImSkhIqn3fl0M3ZlYxQXRJTEl7doAXhSheCK3qH7nPeEUKo4myB1Hq6XGZ8hrjtRgg4gZ9SgpMHfILx3Kd9xn2Lx3gEnCFFyLjuer9_QLetO2R4vLpE3-vXr_q92Hy-fdSrTZEp42MhZSOCkY3mQBtBaOt4ENqzEGQlWasNeFoxYN4ww2VQbQOi0ox4Y5wIUvMlKv7ffIZhauyQ4tGl2fYu2pf4s7J92tpDnOxfU2nFfwHOo0xO</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Pham, Tuan</creator><scope>ABXSW</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>DG8</scope><scope>ZZAVC</scope></search><sort><creationdate>2019</creationdate><title>Fuzzy weighted recurrence networks of time series Chock</title><author>Pham, Tuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-s123t-66b4d96b83e1b401fa3d48c2dd6562f89ec152e2c92936d7fbe45820c99a4d683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pham, Tuan</creatorcontrib><collection>SWEPUB Linköpings universitet full text</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Linköpings universitet</collection><collection>SwePub Articles full text</collection><jtitle>Physica A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pham, Tuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fuzzy weighted recurrence networks of time series Chock</atitle><jtitle>Physica A</jtitle><date>2019</date><risdate>2019</risdate><volume>513</volume><spage>409</spage><pages>409-</pages><issn>0378-4371</issn><issn>1873-2119</issn><abstract>The concept of networks in the context of graph theory delineates a wide variety of real-life complex systems. The theory of networks finds its applications very useful in many scientific and intellectual domains. Weighted networks can characterize complex statistical graph properties, particularly where node connections are heterogeneous. A framework of fuzzy weighted recurrence networks of time series is presented in this letter. Popular graph measures including the average clustering coefficient and characteristic path length of fuzzy weighted recurrence networks are shown to be more robust than those of unweighted recurrence networks derived from binary recurrence plots. (C) 2018 Elsevier B.V. All rights reserved.</abstract><doi>10.1016/j.physa.2018.09.035</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0378-4371
ispartof Physica A, 2019, Vol.513, p.409
issn 0378-4371
1873-2119
language eng
recordid cdi_swepub_primary_oai_DiVA_org_liu_152587
source ScienceDirect Freedom Collection
title Fuzzy weighted recurrence networks of time series Chock
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T19%3A07%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-swepub&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fuzzy%20weighted%20recurrence%20networks%20of%20time%20series%20Chock&rft.jtitle=Physica%20A&rft.au=Pham,%20Tuan&rft.date=2019&rft.volume=513&rft.spage=409&rft.pages=409-&rft.issn=0378-4371&rft_id=info:doi/10.1016/j.physa.2018.09.035&rft_dat=%3Cswepub%3Eoai_DiVA_org_liu_152587%3C/swepub%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-s123t-66b4d96b83e1b401fa3d48c2dd6562f89ec152e2c92936d7fbe45820c99a4d683%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true