Loading…

Element Replacement Approach by Reaction with Lewis Acidic Molten Salts to Synthesize Nanolaminated MAX Phases and MXenes

Nanolaminated materials are important because of their exceptional properties and wide range of applications. Here, we demonstrate a general approach to synthesizing a series of Zn-based MAX phases and Cl-terminated MXenes originating from the replacement reaction between the MAX phase and the late...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Chemical Society 2019-03, Vol.141 (11), p.4730-4737
Main Authors: Li, Mian, Lu, Jun, Luo, Kan, Li, Youbing, Chang, Keke, Chen, Ke, Zhou, Jie, Rosen, Johanna, Hultman, Lars, Eklund, Per, Persson, Per O. Å, Du, Shiyu, Chai, Zhifang, Huang, Zhengren, Huang, Qing
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a399t-c475fb10d1928f41114e3d267b5f87ead7083a705eae20ef70a58efa4348b0b83
cites cdi_FETCH-LOGICAL-a399t-c475fb10d1928f41114e3d267b5f87ead7083a705eae20ef70a58efa4348b0b83
container_end_page 4737
container_issue 11
container_start_page 4730
container_title Journal of the American Chemical Society
container_volume 141
creator Li, Mian
Lu, Jun
Luo, Kan
Li, Youbing
Chang, Keke
Chen, Ke
Zhou, Jie
Rosen, Johanna
Hultman, Lars
Eklund, Per
Persson, Per O. Å
Du, Shiyu
Chai, Zhifang
Huang, Zhengren
Huang, Qing
description Nanolaminated materials are important because of their exceptional properties and wide range of applications. Here, we demonstrate a general approach to synthesizing a series of Zn-based MAX phases and Cl-terminated MXenes originating from the replacement reaction between the MAX phase and the late transition-metal halides. The approach is a top-down route that enables the late transitional element atom (Zn in the present case) to occupy the A site in the pre-existing MAX phase structure. Using this replacement reaction between the Zn element from molten ZnCl2 and the Al element in MAX phase precursors (Ti3AlC2, Ti2AlC, Ti2AlN, and V2AlC), novel MAX phases Ti3ZnC2, Ti2ZnC, Ti2ZnN, and V2ZnC were synthesized. When employing excess ZnCl2, Cl-terminated MXenes (such as Ti3C2Cl2 and Ti2CCl2) were derived by a subsequent exfoliation of Ti3ZnC2 and Ti2ZnC due to the strong Lewis acidity of molten ZnCl2. These results indicate that A-site element replacement in traditional MAX phases by late transition-metal halides opens the door to explore MAX phases that are not thermodynamically stable at high temperature and would be difficult to synthesize through the commonly employed powder metallurgy approach. In addition, this is the first time that exclusively Cl-terminated MXenes were obtained, and the etching effect of Lewis acid in molten salts provides a green and viable route to preparing MXenes through an HF-free chemical approach.
doi_str_mv 10.1021/jacs.9b00574
format article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_liu_156394</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2187523159</sourcerecordid><originalsourceid>FETCH-LOGICAL-a399t-c475fb10d1928f41114e3d267b5f87ead7083a705eae20ef70a58efa4348b0b83</originalsourceid><addsrcrecordid>eNptkc1v1DAQxS0EotvCjTPykQMp_ohj5xiVQpG2gCig3qxJMmG9Suw0drRa_nqy2qVcOM2HfvNGeo-QV5xdcib4uy008bKsGVM6f0JWXAmWKS6Kp2TFGBOZNoU8I-cxbpcxF4Y_J2eSGcHLQq7I_rrHAX2i33DsoTn21ThOAZoNrffLHprkgqc7lzZ0jTsXadW41jX0NvQJPb2DPkWaAr3b-7TB6H4j_Qw-9DA4Dwlbelvd068biBgp-GW8R4_xBXnWQR_x5alekB8frr9f3WTrLx8_XVXrDGRZpqzJtepqzlpeCtPlnPMcZSsKXavOaIRWMyNBM4WAgmGnGSiDHeQyNzWrjbwg2VE37nCcaztOboBpbwM4-979rGyYftnezZarQpb5wr858osHDzPGZAcXG-x78BjmaAU3WgnJVbmgb49oM4UYJ-wexTmzh3DsIRx7CmfBX5-U53rA9hH-m8a_14erbZgnvxjzf60_OV6Yhg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2187523159</pqid></control><display><type>article</type><title>Element Replacement Approach by Reaction with Lewis Acidic Molten Salts to Synthesize Nanolaminated MAX Phases and MXenes</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Li, Mian ; Lu, Jun ; Luo, Kan ; Li, Youbing ; Chang, Keke ; Chen, Ke ; Zhou, Jie ; Rosen, Johanna ; Hultman, Lars ; Eklund, Per ; Persson, Per O. Å ; Du, Shiyu ; Chai, Zhifang ; Huang, Zhengren ; Huang, Qing</creator><creatorcontrib>Li, Mian ; Lu, Jun ; Luo, Kan ; Li, Youbing ; Chang, Keke ; Chen, Ke ; Zhou, Jie ; Rosen, Johanna ; Hultman, Lars ; Eklund, Per ; Persson, Per O. Å ; Du, Shiyu ; Chai, Zhifang ; Huang, Zhengren ; Huang, Qing</creatorcontrib><description>Nanolaminated materials are important because of their exceptional properties and wide range of applications. Here, we demonstrate a general approach to synthesizing a series of Zn-based MAX phases and Cl-terminated MXenes originating from the replacement reaction between the MAX phase and the late transition-metal halides. The approach is a top-down route that enables the late transitional element atom (Zn in the present case) to occupy the A site in the pre-existing MAX phase structure. Using this replacement reaction between the Zn element from molten ZnCl2 and the Al element in MAX phase precursors (Ti3AlC2, Ti2AlC, Ti2AlN, and V2AlC), novel MAX phases Ti3ZnC2, Ti2ZnC, Ti2ZnN, and V2ZnC were synthesized. When employing excess ZnCl2, Cl-terminated MXenes (such as Ti3C2Cl2 and Ti2CCl2) were derived by a subsequent exfoliation of Ti3ZnC2 and Ti2ZnC due to the strong Lewis acidity of molten ZnCl2. These results indicate that A-site element replacement in traditional MAX phases by late transition-metal halides opens the door to explore MAX phases that are not thermodynamically stable at high temperature and would be difficult to synthesize through the commonly employed powder metallurgy approach. In addition, this is the first time that exclusively Cl-terminated MXenes were obtained, and the etching effect of Lewis acid in molten salts provides a green and viable route to preparing MXenes through an HF-free chemical approach.</description><identifier>ISSN: 0002-7863</identifier><identifier>ISSN: 1520-5126</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.9b00574</identifier><identifier>PMID: 30821963</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Journal of the American Chemical Society, 2019-03, Vol.141 (11), p.4730-4737</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a399t-c475fb10d1928f41114e3d267b5f87ead7083a705eae20ef70a58efa4348b0b83</citedby><cites>FETCH-LOGICAL-a399t-c475fb10d1928f41114e3d267b5f87ead7083a705eae20ef70a58efa4348b0b83</cites><orcidid>0000-0001-9140-6724 ; 0000-0002-5173-6726 ; 0000-0003-1785-0864 ; 0000-0002-3139-7456 ; 0000-0001-6707-3915 ; 0000-0001-7083-9416 ; 0000-0002-8639-6135</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30821963$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-156394$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Mian</creatorcontrib><creatorcontrib>Lu, Jun</creatorcontrib><creatorcontrib>Luo, Kan</creatorcontrib><creatorcontrib>Li, Youbing</creatorcontrib><creatorcontrib>Chang, Keke</creatorcontrib><creatorcontrib>Chen, Ke</creatorcontrib><creatorcontrib>Zhou, Jie</creatorcontrib><creatorcontrib>Rosen, Johanna</creatorcontrib><creatorcontrib>Hultman, Lars</creatorcontrib><creatorcontrib>Eklund, Per</creatorcontrib><creatorcontrib>Persson, Per O. Å</creatorcontrib><creatorcontrib>Du, Shiyu</creatorcontrib><creatorcontrib>Chai, Zhifang</creatorcontrib><creatorcontrib>Huang, Zhengren</creatorcontrib><creatorcontrib>Huang, Qing</creatorcontrib><title>Element Replacement Approach by Reaction with Lewis Acidic Molten Salts to Synthesize Nanolaminated MAX Phases and MXenes</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Nanolaminated materials are important because of their exceptional properties and wide range of applications. Here, we demonstrate a general approach to synthesizing a series of Zn-based MAX phases and Cl-terminated MXenes originating from the replacement reaction between the MAX phase and the late transition-metal halides. The approach is a top-down route that enables the late transitional element atom (Zn in the present case) to occupy the A site in the pre-existing MAX phase structure. Using this replacement reaction between the Zn element from molten ZnCl2 and the Al element in MAX phase precursors (Ti3AlC2, Ti2AlC, Ti2AlN, and V2AlC), novel MAX phases Ti3ZnC2, Ti2ZnC, Ti2ZnN, and V2ZnC were synthesized. When employing excess ZnCl2, Cl-terminated MXenes (such as Ti3C2Cl2 and Ti2CCl2) were derived by a subsequent exfoliation of Ti3ZnC2 and Ti2ZnC due to the strong Lewis acidity of molten ZnCl2. These results indicate that A-site element replacement in traditional MAX phases by late transition-metal halides opens the door to explore MAX phases that are not thermodynamically stable at high temperature and would be difficult to synthesize through the commonly employed powder metallurgy approach. In addition, this is the first time that exclusively Cl-terminated MXenes were obtained, and the etching effect of Lewis acid in molten salts provides a green and viable route to preparing MXenes through an HF-free chemical approach.</description><issn>0002-7863</issn><issn>1520-5126</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNptkc1v1DAQxS0EotvCjTPykQMp_ohj5xiVQpG2gCig3qxJMmG9Suw0drRa_nqy2qVcOM2HfvNGeo-QV5xdcib4uy008bKsGVM6f0JWXAmWKS6Kp2TFGBOZNoU8I-cxbpcxF4Y_J2eSGcHLQq7I_rrHAX2i33DsoTn21ThOAZoNrffLHprkgqc7lzZ0jTsXadW41jX0NvQJPb2DPkWaAr3b-7TB6H4j_Qw-9DA4Dwlbelvd068biBgp-GW8R4_xBXnWQR_x5alekB8frr9f3WTrLx8_XVXrDGRZpqzJtepqzlpeCtPlnPMcZSsKXavOaIRWMyNBM4WAgmGnGSiDHeQyNzWrjbwg2VE37nCcaztOboBpbwM4-979rGyYftnezZarQpb5wr858osHDzPGZAcXG-x78BjmaAU3WgnJVbmgb49oM4UYJ-wexTmzh3DsIRx7CmfBX5-U53rA9hH-m8a_14erbZgnvxjzf60_OV6Yhg</recordid><startdate>20190320</startdate><enddate>20190320</enddate><creator>Li, Mian</creator><creator>Lu, Jun</creator><creator>Luo, Kan</creator><creator>Li, Youbing</creator><creator>Chang, Keke</creator><creator>Chen, Ke</creator><creator>Zhou, Jie</creator><creator>Rosen, Johanna</creator><creator>Hultman, Lars</creator><creator>Eklund, Per</creator><creator>Persson, Per O. Å</creator><creator>Du, Shiyu</creator><creator>Chai, Zhifang</creator><creator>Huang, Zhengren</creator><creator>Huang, Qing</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>ABXSW</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>DG8</scope><scope>ZZAVC</scope><orcidid>https://orcid.org/0000-0001-9140-6724</orcidid><orcidid>https://orcid.org/0000-0002-5173-6726</orcidid><orcidid>https://orcid.org/0000-0003-1785-0864</orcidid><orcidid>https://orcid.org/0000-0002-3139-7456</orcidid><orcidid>https://orcid.org/0000-0001-6707-3915</orcidid><orcidid>https://orcid.org/0000-0001-7083-9416</orcidid><orcidid>https://orcid.org/0000-0002-8639-6135</orcidid></search><sort><creationdate>20190320</creationdate><title>Element Replacement Approach by Reaction with Lewis Acidic Molten Salts to Synthesize Nanolaminated MAX Phases and MXenes</title><author>Li, Mian ; Lu, Jun ; Luo, Kan ; Li, Youbing ; Chang, Keke ; Chen, Ke ; Zhou, Jie ; Rosen, Johanna ; Hultman, Lars ; Eklund, Per ; Persson, Per O. Å ; Du, Shiyu ; Chai, Zhifang ; Huang, Zhengren ; Huang, Qing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a399t-c475fb10d1928f41114e3d267b5f87ead7083a705eae20ef70a58efa4348b0b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Mian</creatorcontrib><creatorcontrib>Lu, Jun</creatorcontrib><creatorcontrib>Luo, Kan</creatorcontrib><creatorcontrib>Li, Youbing</creatorcontrib><creatorcontrib>Chang, Keke</creatorcontrib><creatorcontrib>Chen, Ke</creatorcontrib><creatorcontrib>Zhou, Jie</creatorcontrib><creatorcontrib>Rosen, Johanna</creatorcontrib><creatorcontrib>Hultman, Lars</creatorcontrib><creatorcontrib>Eklund, Per</creatorcontrib><creatorcontrib>Persson, Per O. Å</creatorcontrib><creatorcontrib>Du, Shiyu</creatorcontrib><creatorcontrib>Chai, Zhifang</creatorcontrib><creatorcontrib>Huang, Zhengren</creatorcontrib><creatorcontrib>Huang, Qing</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>SWEPUB Linköpings universitet full text</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Linköpings universitet</collection><collection>SwePub Articles full text</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Mian</au><au>Lu, Jun</au><au>Luo, Kan</au><au>Li, Youbing</au><au>Chang, Keke</au><au>Chen, Ke</au><au>Zhou, Jie</au><au>Rosen, Johanna</au><au>Hultman, Lars</au><au>Eklund, Per</au><au>Persson, Per O. Å</au><au>Du, Shiyu</au><au>Chai, Zhifang</au><au>Huang, Zhengren</au><au>Huang, Qing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Element Replacement Approach by Reaction with Lewis Acidic Molten Salts to Synthesize Nanolaminated MAX Phases and MXenes</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2019-03-20</date><risdate>2019</risdate><volume>141</volume><issue>11</issue><spage>4730</spage><epage>4737</epage><pages>4730-4737</pages><issn>0002-7863</issn><issn>1520-5126</issn><eissn>1520-5126</eissn><abstract>Nanolaminated materials are important because of their exceptional properties and wide range of applications. Here, we demonstrate a general approach to synthesizing a series of Zn-based MAX phases and Cl-terminated MXenes originating from the replacement reaction between the MAX phase and the late transition-metal halides. The approach is a top-down route that enables the late transitional element atom (Zn in the present case) to occupy the A site in the pre-existing MAX phase structure. Using this replacement reaction between the Zn element from molten ZnCl2 and the Al element in MAX phase precursors (Ti3AlC2, Ti2AlC, Ti2AlN, and V2AlC), novel MAX phases Ti3ZnC2, Ti2ZnC, Ti2ZnN, and V2ZnC were synthesized. When employing excess ZnCl2, Cl-terminated MXenes (such as Ti3C2Cl2 and Ti2CCl2) were derived by a subsequent exfoliation of Ti3ZnC2 and Ti2ZnC due to the strong Lewis acidity of molten ZnCl2. These results indicate that A-site element replacement in traditional MAX phases by late transition-metal halides opens the door to explore MAX phases that are not thermodynamically stable at high temperature and would be difficult to synthesize through the commonly employed powder metallurgy approach. In addition, this is the first time that exclusively Cl-terminated MXenes were obtained, and the etching effect of Lewis acid in molten salts provides a green and viable route to preparing MXenes through an HF-free chemical approach.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30821963</pmid><doi>10.1021/jacs.9b00574</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-9140-6724</orcidid><orcidid>https://orcid.org/0000-0002-5173-6726</orcidid><orcidid>https://orcid.org/0000-0003-1785-0864</orcidid><orcidid>https://orcid.org/0000-0002-3139-7456</orcidid><orcidid>https://orcid.org/0000-0001-6707-3915</orcidid><orcidid>https://orcid.org/0000-0001-7083-9416</orcidid><orcidid>https://orcid.org/0000-0002-8639-6135</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2019-03, Vol.141 (11), p.4730-4737
issn 0002-7863
1520-5126
1520-5126
language eng
recordid cdi_swepub_primary_oai_DiVA_org_liu_156394
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Element Replacement Approach by Reaction with Lewis Acidic Molten Salts to Synthesize Nanolaminated MAX Phases and MXenes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T02%3A19%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Element%20Replacement%20Approach%20by%20Reaction%20with%20Lewis%20Acidic%20Molten%20Salts%20to%20Synthesize%20Nanolaminated%20MAX%20Phases%20and%20MXenes&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Li,%20Mian&rft.date=2019-03-20&rft.volume=141&rft.issue=11&rft.spage=4730&rft.epage=4737&rft.pages=4730-4737&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.9b00574&rft_dat=%3Cproquest_swepu%3E2187523159%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a399t-c475fb10d1928f41114e3d267b5f87ead7083a705eae20ef70a58efa4348b0b83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2187523159&rft_id=info:pmid/30821963&rfr_iscdi=true