Loading…
Element Replacement Approach by Reaction with Lewis Acidic Molten Salts to Synthesize Nanolaminated MAX Phases and MXenes
Nanolaminated materials are important because of their exceptional properties and wide range of applications. Here, we demonstrate a general approach to synthesizing a series of Zn-based MAX phases and Cl-terminated MXenes originating from the replacement reaction between the MAX phase and the late...
Saved in:
Published in: | Journal of the American Chemical Society 2019-03, Vol.141 (11), p.4730-4737 |
---|---|
Main Authors: | , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a399t-c475fb10d1928f41114e3d267b5f87ead7083a705eae20ef70a58efa4348b0b83 |
---|---|
cites | cdi_FETCH-LOGICAL-a399t-c475fb10d1928f41114e3d267b5f87ead7083a705eae20ef70a58efa4348b0b83 |
container_end_page | 4737 |
container_issue | 11 |
container_start_page | 4730 |
container_title | Journal of the American Chemical Society |
container_volume | 141 |
creator | Li, Mian Lu, Jun Luo, Kan Li, Youbing Chang, Keke Chen, Ke Zhou, Jie Rosen, Johanna Hultman, Lars Eklund, Per Persson, Per O. Å Du, Shiyu Chai, Zhifang Huang, Zhengren Huang, Qing |
description | Nanolaminated materials are important because of their exceptional properties and wide range of applications. Here, we demonstrate a general approach to synthesizing a series of Zn-based MAX phases and Cl-terminated MXenes originating from the replacement reaction between the MAX phase and the late transition-metal halides. The approach is a top-down route that enables the late transitional element atom (Zn in the present case) to occupy the A site in the pre-existing MAX phase structure. Using this replacement reaction between the Zn element from molten ZnCl2 and the Al element in MAX phase precursors (Ti3AlC2, Ti2AlC, Ti2AlN, and V2AlC), novel MAX phases Ti3ZnC2, Ti2ZnC, Ti2ZnN, and V2ZnC were synthesized. When employing excess ZnCl2, Cl-terminated MXenes (such as Ti3C2Cl2 and Ti2CCl2) were derived by a subsequent exfoliation of Ti3ZnC2 and Ti2ZnC due to the strong Lewis acidity of molten ZnCl2. These results indicate that A-site element replacement in traditional MAX phases by late transition-metal halides opens the door to explore MAX phases that are not thermodynamically stable at high temperature and would be difficult to synthesize through the commonly employed powder metallurgy approach. In addition, this is the first time that exclusively Cl-terminated MXenes were obtained, and the etching effect of Lewis acid in molten salts provides a green and viable route to preparing MXenes through an HF-free chemical approach. |
doi_str_mv | 10.1021/jacs.9b00574 |
format | article |
fullrecord | <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_liu_156394</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2187523159</sourcerecordid><originalsourceid>FETCH-LOGICAL-a399t-c475fb10d1928f41114e3d267b5f87ead7083a705eae20ef70a58efa4348b0b83</originalsourceid><addsrcrecordid>eNptkc1v1DAQxS0EotvCjTPykQMp_ohj5xiVQpG2gCig3qxJMmG9Suw0drRa_nqy2qVcOM2HfvNGeo-QV5xdcib4uy008bKsGVM6f0JWXAmWKS6Kp2TFGBOZNoU8I-cxbpcxF4Y_J2eSGcHLQq7I_rrHAX2i33DsoTn21ThOAZoNrffLHprkgqc7lzZ0jTsXadW41jX0NvQJPb2DPkWaAr3b-7TB6H4j_Qw-9DA4Dwlbelvd068biBgp-GW8R4_xBXnWQR_x5alekB8frr9f3WTrLx8_XVXrDGRZpqzJtepqzlpeCtPlnPMcZSsKXavOaIRWMyNBM4WAgmGnGSiDHeQyNzWrjbwg2VE37nCcaztOboBpbwM4-979rGyYftnezZarQpb5wr858osHDzPGZAcXG-x78BjmaAU3WgnJVbmgb49oM4UYJ-wexTmzh3DsIRx7CmfBX5-U53rA9hH-m8a_14erbZgnvxjzf60_OV6Yhg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2187523159</pqid></control><display><type>article</type><title>Element Replacement Approach by Reaction with Lewis Acidic Molten Salts to Synthesize Nanolaminated MAX Phases and MXenes</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Li, Mian ; Lu, Jun ; Luo, Kan ; Li, Youbing ; Chang, Keke ; Chen, Ke ; Zhou, Jie ; Rosen, Johanna ; Hultman, Lars ; Eklund, Per ; Persson, Per O. Å ; Du, Shiyu ; Chai, Zhifang ; Huang, Zhengren ; Huang, Qing</creator><creatorcontrib>Li, Mian ; Lu, Jun ; Luo, Kan ; Li, Youbing ; Chang, Keke ; Chen, Ke ; Zhou, Jie ; Rosen, Johanna ; Hultman, Lars ; Eklund, Per ; Persson, Per O. Å ; Du, Shiyu ; Chai, Zhifang ; Huang, Zhengren ; Huang, Qing</creatorcontrib><description>Nanolaminated materials are important because of their exceptional properties and wide range of applications. Here, we demonstrate a general approach to synthesizing a series of Zn-based MAX phases and Cl-terminated MXenes originating from the replacement reaction between the MAX phase and the late transition-metal halides. The approach is a top-down route that enables the late transitional element atom (Zn in the present case) to occupy the A site in the pre-existing MAX phase structure. Using this replacement reaction between the Zn element from molten ZnCl2 and the Al element in MAX phase precursors (Ti3AlC2, Ti2AlC, Ti2AlN, and V2AlC), novel MAX phases Ti3ZnC2, Ti2ZnC, Ti2ZnN, and V2ZnC were synthesized. When employing excess ZnCl2, Cl-terminated MXenes (such as Ti3C2Cl2 and Ti2CCl2) were derived by a subsequent exfoliation of Ti3ZnC2 and Ti2ZnC due to the strong Lewis acidity of molten ZnCl2. These results indicate that A-site element replacement in traditional MAX phases by late transition-metal halides opens the door to explore MAX phases that are not thermodynamically stable at high temperature and would be difficult to synthesize through the commonly employed powder metallurgy approach. In addition, this is the first time that exclusively Cl-terminated MXenes were obtained, and the etching effect of Lewis acid in molten salts provides a green and viable route to preparing MXenes through an HF-free chemical approach.</description><identifier>ISSN: 0002-7863</identifier><identifier>ISSN: 1520-5126</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.9b00574</identifier><identifier>PMID: 30821963</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Journal of the American Chemical Society, 2019-03, Vol.141 (11), p.4730-4737</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a399t-c475fb10d1928f41114e3d267b5f87ead7083a705eae20ef70a58efa4348b0b83</citedby><cites>FETCH-LOGICAL-a399t-c475fb10d1928f41114e3d267b5f87ead7083a705eae20ef70a58efa4348b0b83</cites><orcidid>0000-0001-9140-6724 ; 0000-0002-5173-6726 ; 0000-0003-1785-0864 ; 0000-0002-3139-7456 ; 0000-0001-6707-3915 ; 0000-0001-7083-9416 ; 0000-0002-8639-6135</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30821963$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-156394$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Mian</creatorcontrib><creatorcontrib>Lu, Jun</creatorcontrib><creatorcontrib>Luo, Kan</creatorcontrib><creatorcontrib>Li, Youbing</creatorcontrib><creatorcontrib>Chang, Keke</creatorcontrib><creatorcontrib>Chen, Ke</creatorcontrib><creatorcontrib>Zhou, Jie</creatorcontrib><creatorcontrib>Rosen, Johanna</creatorcontrib><creatorcontrib>Hultman, Lars</creatorcontrib><creatorcontrib>Eklund, Per</creatorcontrib><creatorcontrib>Persson, Per O. Å</creatorcontrib><creatorcontrib>Du, Shiyu</creatorcontrib><creatorcontrib>Chai, Zhifang</creatorcontrib><creatorcontrib>Huang, Zhengren</creatorcontrib><creatorcontrib>Huang, Qing</creatorcontrib><title>Element Replacement Approach by Reaction with Lewis Acidic Molten Salts to Synthesize Nanolaminated MAX Phases and MXenes</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Nanolaminated materials are important because of their exceptional properties and wide range of applications. Here, we demonstrate a general approach to synthesizing a series of Zn-based MAX phases and Cl-terminated MXenes originating from the replacement reaction between the MAX phase and the late transition-metal halides. The approach is a top-down route that enables the late transitional element atom (Zn in the present case) to occupy the A site in the pre-existing MAX phase structure. Using this replacement reaction between the Zn element from molten ZnCl2 and the Al element in MAX phase precursors (Ti3AlC2, Ti2AlC, Ti2AlN, and V2AlC), novel MAX phases Ti3ZnC2, Ti2ZnC, Ti2ZnN, and V2ZnC were synthesized. When employing excess ZnCl2, Cl-terminated MXenes (such as Ti3C2Cl2 and Ti2CCl2) were derived by a subsequent exfoliation of Ti3ZnC2 and Ti2ZnC due to the strong Lewis acidity of molten ZnCl2. These results indicate that A-site element replacement in traditional MAX phases by late transition-metal halides opens the door to explore MAX phases that are not thermodynamically stable at high temperature and would be difficult to synthesize through the commonly employed powder metallurgy approach. In addition, this is the first time that exclusively Cl-terminated MXenes were obtained, and the etching effect of Lewis acid in molten salts provides a green and viable route to preparing MXenes through an HF-free chemical approach.</description><issn>0002-7863</issn><issn>1520-5126</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNptkc1v1DAQxS0EotvCjTPykQMp_ohj5xiVQpG2gCig3qxJMmG9Suw0drRa_nqy2qVcOM2HfvNGeo-QV5xdcib4uy008bKsGVM6f0JWXAmWKS6Kp2TFGBOZNoU8I-cxbpcxF4Y_J2eSGcHLQq7I_rrHAX2i33DsoTn21ThOAZoNrffLHprkgqc7lzZ0jTsXadW41jX0NvQJPb2DPkWaAr3b-7TB6H4j_Qw-9DA4Dwlbelvd068biBgp-GW8R4_xBXnWQR_x5alekB8frr9f3WTrLx8_XVXrDGRZpqzJtepqzlpeCtPlnPMcZSsKXavOaIRWMyNBM4WAgmGnGSiDHeQyNzWrjbwg2VE37nCcaztOboBpbwM4-979rGyYftnezZarQpb5wr858osHDzPGZAcXG-x78BjmaAU3WgnJVbmgb49oM4UYJ-wexTmzh3DsIRx7CmfBX5-U53rA9hH-m8a_14erbZgnvxjzf60_OV6Yhg</recordid><startdate>20190320</startdate><enddate>20190320</enddate><creator>Li, Mian</creator><creator>Lu, Jun</creator><creator>Luo, Kan</creator><creator>Li, Youbing</creator><creator>Chang, Keke</creator><creator>Chen, Ke</creator><creator>Zhou, Jie</creator><creator>Rosen, Johanna</creator><creator>Hultman, Lars</creator><creator>Eklund, Per</creator><creator>Persson, Per O. Å</creator><creator>Du, Shiyu</creator><creator>Chai, Zhifang</creator><creator>Huang, Zhengren</creator><creator>Huang, Qing</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>ABXSW</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>DG8</scope><scope>ZZAVC</scope><orcidid>https://orcid.org/0000-0001-9140-6724</orcidid><orcidid>https://orcid.org/0000-0002-5173-6726</orcidid><orcidid>https://orcid.org/0000-0003-1785-0864</orcidid><orcidid>https://orcid.org/0000-0002-3139-7456</orcidid><orcidid>https://orcid.org/0000-0001-6707-3915</orcidid><orcidid>https://orcid.org/0000-0001-7083-9416</orcidid><orcidid>https://orcid.org/0000-0002-8639-6135</orcidid></search><sort><creationdate>20190320</creationdate><title>Element Replacement Approach by Reaction with Lewis Acidic Molten Salts to Synthesize Nanolaminated MAX Phases and MXenes</title><author>Li, Mian ; Lu, Jun ; Luo, Kan ; Li, Youbing ; Chang, Keke ; Chen, Ke ; Zhou, Jie ; Rosen, Johanna ; Hultman, Lars ; Eklund, Per ; Persson, Per O. Å ; Du, Shiyu ; Chai, Zhifang ; Huang, Zhengren ; Huang, Qing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a399t-c475fb10d1928f41114e3d267b5f87ead7083a705eae20ef70a58efa4348b0b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Mian</creatorcontrib><creatorcontrib>Lu, Jun</creatorcontrib><creatorcontrib>Luo, Kan</creatorcontrib><creatorcontrib>Li, Youbing</creatorcontrib><creatorcontrib>Chang, Keke</creatorcontrib><creatorcontrib>Chen, Ke</creatorcontrib><creatorcontrib>Zhou, Jie</creatorcontrib><creatorcontrib>Rosen, Johanna</creatorcontrib><creatorcontrib>Hultman, Lars</creatorcontrib><creatorcontrib>Eklund, Per</creatorcontrib><creatorcontrib>Persson, Per O. Å</creatorcontrib><creatorcontrib>Du, Shiyu</creatorcontrib><creatorcontrib>Chai, Zhifang</creatorcontrib><creatorcontrib>Huang, Zhengren</creatorcontrib><creatorcontrib>Huang, Qing</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>SWEPUB Linköpings universitet full text</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Linköpings universitet</collection><collection>SwePub Articles full text</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Mian</au><au>Lu, Jun</au><au>Luo, Kan</au><au>Li, Youbing</au><au>Chang, Keke</au><au>Chen, Ke</au><au>Zhou, Jie</au><au>Rosen, Johanna</au><au>Hultman, Lars</au><au>Eklund, Per</au><au>Persson, Per O. Å</au><au>Du, Shiyu</au><au>Chai, Zhifang</au><au>Huang, Zhengren</au><au>Huang, Qing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Element Replacement Approach by Reaction with Lewis Acidic Molten Salts to Synthesize Nanolaminated MAX Phases and MXenes</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2019-03-20</date><risdate>2019</risdate><volume>141</volume><issue>11</issue><spage>4730</spage><epage>4737</epage><pages>4730-4737</pages><issn>0002-7863</issn><issn>1520-5126</issn><eissn>1520-5126</eissn><abstract>Nanolaminated materials are important because of their exceptional properties and wide range of applications. Here, we demonstrate a general approach to synthesizing a series of Zn-based MAX phases and Cl-terminated MXenes originating from the replacement reaction between the MAX phase and the late transition-metal halides. The approach is a top-down route that enables the late transitional element atom (Zn in the present case) to occupy the A site in the pre-existing MAX phase structure. Using this replacement reaction between the Zn element from molten ZnCl2 and the Al element in MAX phase precursors (Ti3AlC2, Ti2AlC, Ti2AlN, and V2AlC), novel MAX phases Ti3ZnC2, Ti2ZnC, Ti2ZnN, and V2ZnC were synthesized. When employing excess ZnCl2, Cl-terminated MXenes (such as Ti3C2Cl2 and Ti2CCl2) were derived by a subsequent exfoliation of Ti3ZnC2 and Ti2ZnC due to the strong Lewis acidity of molten ZnCl2. These results indicate that A-site element replacement in traditional MAX phases by late transition-metal halides opens the door to explore MAX phases that are not thermodynamically stable at high temperature and would be difficult to synthesize through the commonly employed powder metallurgy approach. In addition, this is the first time that exclusively Cl-terminated MXenes were obtained, and the etching effect of Lewis acid in molten salts provides a green and viable route to preparing MXenes through an HF-free chemical approach.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30821963</pmid><doi>10.1021/jacs.9b00574</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-9140-6724</orcidid><orcidid>https://orcid.org/0000-0002-5173-6726</orcidid><orcidid>https://orcid.org/0000-0003-1785-0864</orcidid><orcidid>https://orcid.org/0000-0002-3139-7456</orcidid><orcidid>https://orcid.org/0000-0001-6707-3915</orcidid><orcidid>https://orcid.org/0000-0001-7083-9416</orcidid><orcidid>https://orcid.org/0000-0002-8639-6135</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7863 |
ispartof | Journal of the American Chemical Society, 2019-03, Vol.141 (11), p.4730-4737 |
issn | 0002-7863 1520-5126 1520-5126 |
language | eng |
recordid | cdi_swepub_primary_oai_DiVA_org_liu_156394 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
title | Element Replacement Approach by Reaction with Lewis Acidic Molten Salts to Synthesize Nanolaminated MAX Phases and MXenes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T02%3A19%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Element%20Replacement%20Approach%20by%20Reaction%20with%20Lewis%20Acidic%20Molten%20Salts%20to%20Synthesize%20Nanolaminated%20MAX%20Phases%20and%20MXenes&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Li,%20Mian&rft.date=2019-03-20&rft.volume=141&rft.issue=11&rft.spage=4730&rft.epage=4737&rft.pages=4730-4737&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.9b00574&rft_dat=%3Cproquest_swepu%3E2187523159%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a399t-c475fb10d1928f41114e3d267b5f87ead7083a705eae20ef70a58efa4348b0b83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2187523159&rft_id=info:pmid/30821963&rfr_iscdi=true |