Loading…
LiSep LSTM: A Machine Learning Algorithm for Early Detection of Septic Shock
Sepsis is a major health concern with global estimates of 31.5 million cases per year. Case fatality rates are still unacceptably high, and early detection and treatment is vital since it significantly reduces mortality rates for this condition. Appropriately designed automated detection tools have...
Saved in:
Published in: | Scientific reports 2019-10, Vol.9 (1), p.15132, Article 15132 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c512t-a551e3c6c0446f67a7179d4506ebe7a01780a9004f49bcd9cf6f9c5ebcd770543 |
---|---|
cites | cdi_FETCH-LOGICAL-c512t-a551e3c6c0446f67a7179d4506ebe7a01780a9004f49bcd9cf6f9c5ebcd770543 |
container_end_page | |
container_issue | 1 |
container_start_page | 15132 |
container_title | Scientific reports |
container_volume | 9 |
creator | Fagerström, Josef Bång, Magnus Wilhelms, Daniel Chew, Michelle S. |
description | Sepsis is a major health concern with global estimates of 31.5 million cases per year. Case fatality rates are still unacceptably high, and early detection and treatment is vital since it significantly reduces mortality rates for this condition. Appropriately designed automated detection tools have the potential to reduce the morbidity and mortality of sepsis by providing early and accurate identification of patients who are at risk of developing sepsis. In this paper, we present “LiSep LSTM”; a Long Short-Term Memory neural network designed for early identification of septic shock. LSTM networks are typically well-suited for detecting long-term dependencies in time series data. LiSep LSTM was developed using the machine learning framework Keras with a Google TensorFlow back end. The model was trained with data from the Medical Information Mart for Intensive Care database which contains vital signs, laboratory data, and journal entries from approximately 59,000 ICU patients. We show that LiSep LSTM can outperform a less complex model, using the same features and targets, with an AUROC 0.8306 (95% confidence interval: 0.8236, 0.8376) and median offsets between prediction and septic shock onset up to 40 hours (interquartile range, 20 to 135 hours). Moreover, we discuss how our classifier performs at specific offsets before septic shock onset, and compare it with five state-of-the-art machine learning algorithms for early detection of sepsis. |
doi_str_mv | 10.1038/s41598-019-51219-4 |
format | article |
fullrecord | <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_liu_161606</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2309514502</sourcerecordid><originalsourceid>FETCH-LOGICAL-c512t-a551e3c6c0446f67a7179d4506ebe7a01780a9004f49bcd9cf6f9c5ebcd770543</originalsourceid><addsrcrecordid>eNp9UU1PAjEUbIxGCPIHPJgmnlfbbtulHkwI4EeyxAPotSmluxSXLXYXDf_eIohwsYfXl7x582YyAFxidINR3LmtKGaiEyEsIoZJqPQENAmiLCIxIacHfQO0q2qOwmNEUCzOQSPGnGLMSROkqR2ZJUxH4-Ed7MKh0jNbGpga5Utb5rBb5M7beraAmfNwoHyxhn1TG11bV0KXwbBdWw1HM6ffL8BZporKtHd_C7w-DMa9pyh9eXzuddNIB6l1pBjDJtZcI0p5xhOV4ERMKUPcTEyiEE46SAmEaEbFRE-FzngmNDOhTxLEaNwC0Za3-jLL1UQuvV0ov5ZOWdm3b13pfC4Lu5KYY454wN9v8QG8MFNtytqr4mjteFLamczdp-QdxEScBILrHYF3HytT1XLuVr4MHiWJkWA4iCcBRbYo7V1VeZPtL2AkN6HJbWgyhCZ_QpMbL1eH2vYrvxEFQLwzG0Zlbvzf7X9ovwG-8KEf</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2309514502</pqid></control><display><type>article</type><title>LiSep LSTM: A Machine Learning Algorithm for Early Detection of Septic Shock</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Fagerström, Josef ; Bång, Magnus ; Wilhelms, Daniel ; Chew, Michelle S.</creator><creatorcontrib>Fagerström, Josef ; Bång, Magnus ; Wilhelms, Daniel ; Chew, Michelle S.</creatorcontrib><description>Sepsis is a major health concern with global estimates of 31.5 million cases per year. Case fatality rates are still unacceptably high, and early detection and treatment is vital since it significantly reduces mortality rates for this condition. Appropriately designed automated detection tools have the potential to reduce the morbidity and mortality of sepsis by providing early and accurate identification of patients who are at risk of developing sepsis. In this paper, we present “LiSep LSTM”; a Long Short-Term Memory neural network designed for early identification of septic shock. LSTM networks are typically well-suited for detecting long-term dependencies in time series data. LiSep LSTM was developed using the machine learning framework Keras with a Google TensorFlow back end. The model was trained with data from the Medical Information Mart for Intensive Care database which contains vital signs, laboratory data, and journal entries from approximately 59,000 ICU patients. We show that LiSep LSTM can outperform a less complex model, using the same features and targets, with an AUROC 0.8306 (95% confidence interval: 0.8236, 0.8376) and median offsets between prediction and septic shock onset up to 40 hours (interquartile range, 20 to 135 hours). Moreover, we discuss how our classifier performs at specific offsets before septic shock onset, and compare it with five state-of-the-art machine learning algorithms for early detection of sepsis.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-019-51219-4</identifier><identifier>PMID: 31641162</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/705/1042 ; 639/705/117 ; 639/705/794 ; 692/700/139 ; Algorithms ; Area Under Curve ; Artificial intelligence ; Early Diagnosis ; Humanities and Social Sciences ; Humans ; Learning algorithms ; Long short-term memory ; Machine Learning ; Morbidity ; Mortality ; multidisciplinary ; Neural networks ; Patients ; ROC Curve ; Science ; Science (multidisciplinary) ; Sepsis ; Septic shock ; Shock, Septic - diagnosis</subject><ispartof>Scientific reports, 2019-10, Vol.9 (1), p.15132, Article 15132</ispartof><rights>The Author(s) 2019</rights><rights>The Author(s) 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c512t-a551e3c6c0446f67a7179d4506ebe7a01780a9004f49bcd9cf6f9c5ebcd770543</citedby><cites>FETCH-LOGICAL-c512t-a551e3c6c0446f67a7179d4506ebe7a01780a9004f49bcd9cf6f9c5ebcd770543</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2309514502/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2309514502?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31641162$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-161606$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Fagerström, Josef</creatorcontrib><creatorcontrib>Bång, Magnus</creatorcontrib><creatorcontrib>Wilhelms, Daniel</creatorcontrib><creatorcontrib>Chew, Michelle S.</creatorcontrib><title>LiSep LSTM: A Machine Learning Algorithm for Early Detection of Septic Shock</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Sepsis is a major health concern with global estimates of 31.5 million cases per year. Case fatality rates are still unacceptably high, and early detection and treatment is vital since it significantly reduces mortality rates for this condition. Appropriately designed automated detection tools have the potential to reduce the morbidity and mortality of sepsis by providing early and accurate identification of patients who are at risk of developing sepsis. In this paper, we present “LiSep LSTM”; a Long Short-Term Memory neural network designed for early identification of septic shock. LSTM networks are typically well-suited for detecting long-term dependencies in time series data. LiSep LSTM was developed using the machine learning framework Keras with a Google TensorFlow back end. The model was trained with data from the Medical Information Mart for Intensive Care database which contains vital signs, laboratory data, and journal entries from approximately 59,000 ICU patients. We show that LiSep LSTM can outperform a less complex model, using the same features and targets, with an AUROC 0.8306 (95% confidence interval: 0.8236, 0.8376) and median offsets between prediction and septic shock onset up to 40 hours (interquartile range, 20 to 135 hours). Moreover, we discuss how our classifier performs at specific offsets before septic shock onset, and compare it with five state-of-the-art machine learning algorithms for early detection of sepsis.</description><subject>639/705/1042</subject><subject>639/705/117</subject><subject>639/705/794</subject><subject>692/700/139</subject><subject>Algorithms</subject><subject>Area Under Curve</subject><subject>Artificial intelligence</subject><subject>Early Diagnosis</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Learning algorithms</subject><subject>Long short-term memory</subject><subject>Machine Learning</subject><subject>Morbidity</subject><subject>Mortality</subject><subject>multidisciplinary</subject><subject>Neural networks</subject><subject>Patients</subject><subject>ROC Curve</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Sepsis</subject><subject>Septic shock</subject><subject>Shock, Septic - diagnosis</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp9UU1PAjEUbIxGCPIHPJgmnlfbbtulHkwI4EeyxAPotSmluxSXLXYXDf_eIohwsYfXl7x582YyAFxidINR3LmtKGaiEyEsIoZJqPQENAmiLCIxIacHfQO0q2qOwmNEUCzOQSPGnGLMSROkqR2ZJUxH4-Ed7MKh0jNbGpga5Utb5rBb5M7beraAmfNwoHyxhn1TG11bV0KXwbBdWw1HM6ffL8BZporKtHd_C7w-DMa9pyh9eXzuddNIB6l1pBjDJtZcI0p5xhOV4ERMKUPcTEyiEE46SAmEaEbFRE-FzngmNDOhTxLEaNwC0Za3-jLL1UQuvV0ov5ZOWdm3b13pfC4Lu5KYY454wN9v8QG8MFNtytqr4mjteFLamczdp-QdxEScBILrHYF3HytT1XLuVr4MHiWJkWA4iCcBRbYo7V1VeZPtL2AkN6HJbWgyhCZ_QpMbL1eH2vYrvxEFQLwzG0Zlbvzf7X9ovwG-8KEf</recordid><startdate>20191022</startdate><enddate>20191022</enddate><creator>Fagerström, Josef</creator><creator>Bång, Magnus</creator><creator>Wilhelms, Daniel</creator><creator>Chew, Michelle S.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>5PM</scope><scope>ABXSW</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>DG8</scope><scope>ZZAVC</scope></search><sort><creationdate>20191022</creationdate><title>LiSep LSTM: A Machine Learning Algorithm for Early Detection of Septic Shock</title><author>Fagerström, Josef ; Bång, Magnus ; Wilhelms, Daniel ; Chew, Michelle S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c512t-a551e3c6c0446f67a7179d4506ebe7a01780a9004f49bcd9cf6f9c5ebcd770543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>639/705/1042</topic><topic>639/705/117</topic><topic>639/705/794</topic><topic>692/700/139</topic><topic>Algorithms</topic><topic>Area Under Curve</topic><topic>Artificial intelligence</topic><topic>Early Diagnosis</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Learning algorithms</topic><topic>Long short-term memory</topic><topic>Machine Learning</topic><topic>Morbidity</topic><topic>Mortality</topic><topic>multidisciplinary</topic><topic>Neural networks</topic><topic>Patients</topic><topic>ROC Curve</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Sepsis</topic><topic>Septic shock</topic><topic>Shock, Septic - diagnosis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fagerström, Josef</creatorcontrib><creatorcontrib>Bång, Magnus</creatorcontrib><creatorcontrib>Wilhelms, Daniel</creatorcontrib><creatorcontrib>Chew, Michelle S.</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SWEPUB Linköpings universitet full text</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Linköpings universitet</collection><collection>SwePub Articles full text</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fagerström, Josef</au><au>Bång, Magnus</au><au>Wilhelms, Daniel</au><au>Chew, Michelle S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LiSep LSTM: A Machine Learning Algorithm for Early Detection of Septic Shock</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2019-10-22</date><risdate>2019</risdate><volume>9</volume><issue>1</issue><spage>15132</spage><pages>15132-</pages><artnum>15132</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Sepsis is a major health concern with global estimates of 31.5 million cases per year. Case fatality rates are still unacceptably high, and early detection and treatment is vital since it significantly reduces mortality rates for this condition. Appropriately designed automated detection tools have the potential to reduce the morbidity and mortality of sepsis by providing early and accurate identification of patients who are at risk of developing sepsis. In this paper, we present “LiSep LSTM”; a Long Short-Term Memory neural network designed for early identification of septic shock. LSTM networks are typically well-suited for detecting long-term dependencies in time series data. LiSep LSTM was developed using the machine learning framework Keras with a Google TensorFlow back end. The model was trained with data from the Medical Information Mart for Intensive Care database which contains vital signs, laboratory data, and journal entries from approximately 59,000 ICU patients. We show that LiSep LSTM can outperform a less complex model, using the same features and targets, with an AUROC 0.8306 (95% confidence interval: 0.8236, 0.8376) and median offsets between prediction and septic shock onset up to 40 hours (interquartile range, 20 to 135 hours). Moreover, we discuss how our classifier performs at specific offsets before septic shock onset, and compare it with five state-of-the-art machine learning algorithms for early detection of sepsis.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31641162</pmid><doi>10.1038/s41598-019-51219-4</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2019-10, Vol.9 (1), p.15132, Article 15132 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_swepub_primary_oai_DiVA_org_liu_161606 |
source | Publicly Available Content Database; PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 639/705/1042 639/705/117 639/705/794 692/700/139 Algorithms Area Under Curve Artificial intelligence Early Diagnosis Humanities and Social Sciences Humans Learning algorithms Long short-term memory Machine Learning Morbidity Mortality multidisciplinary Neural networks Patients ROC Curve Science Science (multidisciplinary) Sepsis Septic shock Shock, Septic - diagnosis |
title | LiSep LSTM: A Machine Learning Algorithm for Early Detection of Septic Shock |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T14%3A43%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LiSep%20LSTM:%20A%20Machine%20Learning%20Algorithm%20for%20Early%20Detection%20of%20Septic%20Shock&rft.jtitle=Scientific%20reports&rft.au=Fagerstr%C3%B6m,%20Josef&rft.date=2019-10-22&rft.volume=9&rft.issue=1&rft.spage=15132&rft.pages=15132-&rft.artnum=15132&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-019-51219-4&rft_dat=%3Cproquest_swepu%3E2309514502%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c512t-a551e3c6c0446f67a7179d4506ebe7a01780a9004f49bcd9cf6f9c5ebcd770543%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2309514502&rft_id=info:pmid/31641162&rfr_iscdi=true |