Loading…
Tin+1Cn MXenes with fully saturated and thermally stable Cl terminations
MXenes are a rapidly growing family of 2D materials that exhibit a highly versatile structure and composition, allowing for significant tuning of the materials properties. These properties are, however, ultimately limited by the surface terminations, which are typically a mixture of species, includi...
Saved in:
Published in: | Nanoscale advances 2019, Vol.1 (9), p.3680-3685 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 3685 |
container_issue | 9 |
container_start_page | 3680 |
container_title | Nanoscale advances |
container_volume | 1 |
creator | Lu, J. Persson, I. Lind, H. Palisaitis, J. Li, M. Li, Y. Chen, K. Zhou, J. Du, S. Chai, Z. Huang, Z. Hultman, L. Eklund, P. Rosen, J. Huang, Q. Persson, P. O. Å. |
description | MXenes are a rapidly growing family of 2D materials that exhibit a highly versatile structure and composition, allowing for significant tuning of the materials properties. These properties are, however, ultimately limited by the surface terminations, which are typically a mixture of species, including F and O that are inherent to the MXene processing. Other and robust terminations are lacking. Here, we apply high-resolution scanning transmission electron microscopy (STEM), corresponding image simulations and first-principles calculations to investigate the surface terminations on MXenes synthesized from MAX phases through Lewis acidic melts. The results show that atomic Cl terminates the synthesized MXenes, with mere residual presence of other termination species. Furthermore,
in situ
STEM-electron energy loss spectroscopy (EELS) heating experiments show that the Cl terminations are stable up to 750 °C. Thus, we present an attractive new termination that widely expands the MXenes' functionalization space and enables new applications.
MXenes are an extensive family of 2D transition metal carbides and nitrides, whose properties are strongly affected by surface terminations, typically O and F. Herein, we enable chlorine as a new termination, thereby expanding the property space. |
doi_str_mv | 10.1039/c9na00324j |
format | article |
fullrecord | <record><control><sourceid>swepub_pubme</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_liu_164437</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_DiVA_org_liu_164437</sourcerecordid><originalsourceid>FETCH-LOGICAL-p284t-33dfb9236a385c347845206fa5482168ac949263906f11bc911bbdb0c9ea94923</originalsourceid><addsrcrecordid>eNpVjMtOwzAQRS0EElXphi_wHgX8ysMbpCo8ilTEpiB21iRxGleOE8UOVf-eQFnQzczo3DMXoWtKbinh8q6UDgjhTOzO0IzFNIkI4-T8332JFt7vCCGMCiFSOUOrjXE3NHf49VM77fHehAbXo7UH7CGMAwRdYXAVDo0eWvjlAQqrcW5xmJBxEEzn_BW6qMF6vfjbc_T-9LjJV9H67fklX66jnmUiRJxXdSEZT4BncclFmomYkaSGWGSMJhmUUkiWcDkxSotSTqOoClJKDT8Jn6Po2Ov3uh8L1Q-mheGgOjDqwXwsVTdslTWjookQPJ38-6M_ya2uSu3CAPbk7TRxplHb7ktJQdNMEv4N4c1oqw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Tin+1Cn MXenes with fully saturated and thermally stable Cl terminations</title><source>PubMed Central</source><creator>Lu, J. ; Persson, I. ; Lind, H. ; Palisaitis, J. ; Li, M. ; Li, Y. ; Chen, K. ; Zhou, J. ; Du, S. ; Chai, Z. ; Huang, Z. ; Hultman, L. ; Eklund, P. ; Rosen, J. ; Huang, Q. ; Persson, P. O. Å.</creator><creatorcontrib>Lu, J. ; Persson, I. ; Lind, H. ; Palisaitis, J. ; Li, M. ; Li, Y. ; Chen, K. ; Zhou, J. ; Du, S. ; Chai, Z. ; Huang, Z. ; Hultman, L. ; Eklund, P. ; Rosen, J. ; Huang, Q. ; Persson, P. O. Å.</creatorcontrib><description>MXenes are a rapidly growing family of 2D materials that exhibit a highly versatile structure and composition, allowing for significant tuning of the materials properties. These properties are, however, ultimately limited by the surface terminations, which are typically a mixture of species, including F and O that are inherent to the MXene processing. Other and robust terminations are lacking. Here, we apply high-resolution scanning transmission electron microscopy (STEM), corresponding image simulations and first-principles calculations to investigate the surface terminations on MXenes synthesized from MAX phases through Lewis acidic melts. The results show that atomic Cl terminates the synthesized MXenes, with mere residual presence of other termination species. Furthermore,
in situ
STEM-electron energy loss spectroscopy (EELS) heating experiments show that the Cl terminations are stable up to 750 °C. Thus, we present an attractive new termination that widely expands the MXenes' functionalization space and enables new applications.
MXenes are an extensive family of 2D transition metal carbides and nitrides, whose properties are strongly affected by surface terminations, typically O and F. Herein, we enable chlorine as a new termination, thereby expanding the property space.</description><identifier>ISSN: 2516-0230</identifier><identifier>EISSN: 2516-0230</identifier><identifier>DOI: 10.1039/c9na00324j</identifier><language>eng</language><publisher>RSC</publisher><subject>Chemistry</subject><ispartof>Nanoscale advances, 2019, Vol.1 (9), p.3680-3685</ispartof><rights>This journal is © The Royal Society of Chemistry 2019 RSC</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9417890/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9417890/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,4010,27900,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-164437$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Lu, J.</creatorcontrib><creatorcontrib>Persson, I.</creatorcontrib><creatorcontrib>Lind, H.</creatorcontrib><creatorcontrib>Palisaitis, J.</creatorcontrib><creatorcontrib>Li, M.</creatorcontrib><creatorcontrib>Li, Y.</creatorcontrib><creatorcontrib>Chen, K.</creatorcontrib><creatorcontrib>Zhou, J.</creatorcontrib><creatorcontrib>Du, S.</creatorcontrib><creatorcontrib>Chai, Z.</creatorcontrib><creatorcontrib>Huang, Z.</creatorcontrib><creatorcontrib>Hultman, L.</creatorcontrib><creatorcontrib>Eklund, P.</creatorcontrib><creatorcontrib>Rosen, J.</creatorcontrib><creatorcontrib>Huang, Q.</creatorcontrib><creatorcontrib>Persson, P. O. Å.</creatorcontrib><title>Tin+1Cn MXenes with fully saturated and thermally stable Cl terminations</title><title>Nanoscale advances</title><description>MXenes are a rapidly growing family of 2D materials that exhibit a highly versatile structure and composition, allowing for significant tuning of the materials properties. These properties are, however, ultimately limited by the surface terminations, which are typically a mixture of species, including F and O that are inherent to the MXene processing. Other and robust terminations are lacking. Here, we apply high-resolution scanning transmission electron microscopy (STEM), corresponding image simulations and first-principles calculations to investigate the surface terminations on MXenes synthesized from MAX phases through Lewis acidic melts. The results show that atomic Cl terminates the synthesized MXenes, with mere residual presence of other termination species. Furthermore,
in situ
STEM-electron energy loss spectroscopy (EELS) heating experiments show that the Cl terminations are stable up to 750 °C. Thus, we present an attractive new termination that widely expands the MXenes' functionalization space and enables new applications.
MXenes are an extensive family of 2D transition metal carbides and nitrides, whose properties are strongly affected by surface terminations, typically O and F. Herein, we enable chlorine as a new termination, thereby expanding the property space.</description><subject>Chemistry</subject><issn>2516-0230</issn><issn>2516-0230</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpVjMtOwzAQRS0EElXphi_wHgX8ysMbpCo8ilTEpiB21iRxGleOE8UOVf-eQFnQzczo3DMXoWtKbinh8q6UDgjhTOzO0IzFNIkI4-T8332JFt7vCCGMCiFSOUOrjXE3NHf49VM77fHehAbXo7UH7CGMAwRdYXAVDo0eWvjlAQqrcW5xmJBxEEzn_BW6qMF6vfjbc_T-9LjJV9H67fklX66jnmUiRJxXdSEZT4BncclFmomYkaSGWGSMJhmUUkiWcDkxSotSTqOoClJKDT8Jn6Po2Ov3uh8L1Q-mheGgOjDqwXwsVTdslTWjookQPJ38-6M_ya2uSu3CAPbk7TRxplHb7ktJQdNMEv4N4c1oqw</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Lu, J.</creator><creator>Persson, I.</creator><creator>Lind, H.</creator><creator>Palisaitis, J.</creator><creator>Li, M.</creator><creator>Li, Y.</creator><creator>Chen, K.</creator><creator>Zhou, J.</creator><creator>Du, S.</creator><creator>Chai, Z.</creator><creator>Huang, Z.</creator><creator>Hultman, L.</creator><creator>Eklund, P.</creator><creator>Rosen, J.</creator><creator>Huang, Q.</creator><creator>Persson, P. O. Å.</creator><general>RSC</general><scope>5PM</scope><scope>ABXSW</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>DG8</scope><scope>ZZAVC</scope></search><sort><creationdate>2019</creationdate><title>Tin+1Cn MXenes with fully saturated and thermally stable Cl terminations</title><author>Lu, J. ; Persson, I. ; Lind, H. ; Palisaitis, J. ; Li, M. ; Li, Y. ; Chen, K. ; Zhou, J. ; Du, S. ; Chai, Z. ; Huang, Z. ; Hultman, L. ; Eklund, P. ; Rosen, J. ; Huang, Q. ; Persson, P. O. Å.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p284t-33dfb9236a385c347845206fa5482168ac949263906f11bc911bbdb0c9ea94923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, J.</creatorcontrib><creatorcontrib>Persson, I.</creatorcontrib><creatorcontrib>Lind, H.</creatorcontrib><creatorcontrib>Palisaitis, J.</creatorcontrib><creatorcontrib>Li, M.</creatorcontrib><creatorcontrib>Li, Y.</creatorcontrib><creatorcontrib>Chen, K.</creatorcontrib><creatorcontrib>Zhou, J.</creatorcontrib><creatorcontrib>Du, S.</creatorcontrib><creatorcontrib>Chai, Z.</creatorcontrib><creatorcontrib>Huang, Z.</creatorcontrib><creatorcontrib>Hultman, L.</creatorcontrib><creatorcontrib>Eklund, P.</creatorcontrib><creatorcontrib>Rosen, J.</creatorcontrib><creatorcontrib>Huang, Q.</creatorcontrib><creatorcontrib>Persson, P. O. Å.</creatorcontrib><collection>PubMed Central (Full Participant titles)</collection><collection>SWEPUB Linköpings universitet full text</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Linköpings universitet</collection><collection>SwePub Articles full text</collection><jtitle>Nanoscale advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, J.</au><au>Persson, I.</au><au>Lind, H.</au><au>Palisaitis, J.</au><au>Li, M.</au><au>Li, Y.</au><au>Chen, K.</au><au>Zhou, J.</au><au>Du, S.</au><au>Chai, Z.</au><au>Huang, Z.</au><au>Hultman, L.</au><au>Eklund, P.</au><au>Rosen, J.</au><au>Huang, Q.</au><au>Persson, P. O. Å.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tin+1Cn MXenes with fully saturated and thermally stable Cl terminations</atitle><jtitle>Nanoscale advances</jtitle><date>2019</date><risdate>2019</risdate><volume>1</volume><issue>9</issue><spage>3680</spage><epage>3685</epage><pages>3680-3685</pages><issn>2516-0230</issn><eissn>2516-0230</eissn><abstract>MXenes are a rapidly growing family of 2D materials that exhibit a highly versatile structure and composition, allowing for significant tuning of the materials properties. These properties are, however, ultimately limited by the surface terminations, which are typically a mixture of species, including F and O that are inherent to the MXene processing. Other and robust terminations are lacking. Here, we apply high-resolution scanning transmission electron microscopy (STEM), corresponding image simulations and first-principles calculations to investigate the surface terminations on MXenes synthesized from MAX phases through Lewis acidic melts. The results show that atomic Cl terminates the synthesized MXenes, with mere residual presence of other termination species. Furthermore,
in situ
STEM-electron energy loss spectroscopy (EELS) heating experiments show that the Cl terminations are stable up to 750 °C. Thus, we present an attractive new termination that widely expands the MXenes' functionalization space and enables new applications.
MXenes are an extensive family of 2D transition metal carbides and nitrides, whose properties are strongly affected by surface terminations, typically O and F. Herein, we enable chlorine as a new termination, thereby expanding the property space.</abstract><pub>RSC</pub><doi>10.1039/c9na00324j</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2516-0230 |
ispartof | Nanoscale advances, 2019, Vol.1 (9), p.3680-3685 |
issn | 2516-0230 2516-0230 |
language | eng |
recordid | cdi_swepub_primary_oai_DiVA_org_liu_164437 |
source | PubMed Central |
subjects | Chemistry |
title | Tin+1Cn MXenes with fully saturated and thermally stable Cl terminations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T23%3A19%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-swepub_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tin+1Cn%20MXenes%20with%20fully%20saturated%20and%20thermally%20stable%20Cl%20terminations&rft.jtitle=Nanoscale%20advances&rft.au=Lu,%20J.&rft.date=2019&rft.volume=1&rft.issue=9&rft.spage=3680&rft.epage=3685&rft.pages=3680-3685&rft.issn=2516-0230&rft.eissn=2516-0230&rft_id=info:doi/10.1039/c9na00324j&rft_dat=%3Cswepub_pubme%3Eoai_DiVA_org_liu_164437%3C/swepub_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p284t-33dfb9236a385c347845206fa5482168ac949263906f11bc911bbdb0c9ea94923%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |