Loading…

On the origin of kinking in layered crystalline solids

[Display omitted] Kinking is a deformation mechanism ubiquitous to layered systems, ranging from the nanometer scale in layered crystalline solids, to the kilometer scale in geological formations. Herein, we demonstrate its origins in the former through multiscale experiments and atomistic simulatio...

Full description

Saved in:
Bibliographic Details
Published in:Materials today (Kidlington, England) England), 2021-03, Vol.43, p.45-52
Main Authors: Plummer, G., Rathod, H., Srivastava, A., Radovic, M., Ouisse, T., Yildizhan, M., Persson, P.O.Å., Lambrinou, K., Barsoum, M.W., Tucker, G.J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c424t-a652b75e3ca9504cfc3c2b1de042017f88ae83c5d5d7c028d02109a05ba1f1f83
cites cdi_FETCH-LOGICAL-c424t-a652b75e3ca9504cfc3c2b1de042017f88ae83c5d5d7c028d02109a05ba1f1f83
container_end_page 52
container_issue
container_start_page 45
container_title Materials today (Kidlington, England)
container_volume 43
creator Plummer, G.
Rathod, H.
Srivastava, A.
Radovic, M.
Ouisse, T.
Yildizhan, M.
Persson, P.O.Å.
Lambrinou, K.
Barsoum, M.W.
Tucker, G.J.
description [Display omitted] Kinking is a deformation mechanism ubiquitous to layered systems, ranging from the nanometer scale in layered crystalline solids, to the kilometer scale in geological formations. Herein, we demonstrate its origins in the former through multiscale experiments and atomistic simulations. When compressively loaded parallel to their basal planes, layered crystalline solids first buckle elastically, then nucleate atomic-scale, highly stressed ripplocation boundaries – a process driven by redistributing strain from energetically expensive in-plane bonds to cheaper out-of-plane bonds. The consequences are far reaching as the unique mechanical properties of layered crystalline solids are highly dependent upon their ability to deform by kinking. Moreover, the compressive strength of numerous natural and engineered layered systems depends upon the ease of kinking or lack there of.
doi_str_mv 10.1016/j.mattod.2020.11.014
format article
fullrecord <record><control><sourceid>hal_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_liu_175720</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1369702120304223</els_id><sourcerecordid>oai_HAL_hal_03318858v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-a652b75e3ca9504cfc3c2b1de042017f88ae83c5d5d7c028d02109a05ba1f1f83</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKv_wMNePew6k2x204tQ6keFQi_qNWSTbJu63S3JttJ_b8qK4EUYmA-ed5h5CblFyBCwuN9kW9X3ncko0DjCDDA_IyMUJUtzBHYea1ZM0hIoXpKrEDYAWCLyESmWbdKvbdJ5t3Jt0tXJp2tjrJLYNepovTWJ9sfQq6ZxrU1C1zgTrslFrZpgb37ymLw_P73N5uli-fI6my5SndO8T1XBaVVyy7SacMh1rZmmFRoLOY0X1EIoK5jmhptSAxUmHggTBbxSWGMt2Jikw97wZXf7Su682yp_lJ1y8tF9TGXnV7Jxe4klLylE_m7g16r5A8-nC3maAWMoBBcHjGw-sNp3IXhb_woQ5MlXuZGDr_Lkq0SU0dcoexhkNv59cNbLoJ1ttTXOW91L07n_F3wDCDuB3Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the origin of kinking in layered crystalline solids</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Plummer, G. ; Rathod, H. ; Srivastava, A. ; Radovic, M. ; Ouisse, T. ; Yildizhan, M. ; Persson, P.O.Å. ; Lambrinou, K. ; Barsoum, M.W. ; Tucker, G.J.</creator><creatorcontrib>Plummer, G. ; Rathod, H. ; Srivastava, A. ; Radovic, M. ; Ouisse, T. ; Yildizhan, M. ; Persson, P.O.Å. ; Lambrinou, K. ; Barsoum, M.W. ; Tucker, G.J.</creatorcontrib><description>[Display omitted] Kinking is a deformation mechanism ubiquitous to layered systems, ranging from the nanometer scale in layered crystalline solids, to the kilometer scale in geological formations. Herein, we demonstrate its origins in the former through multiscale experiments and atomistic simulations. When compressively loaded parallel to their basal planes, layered crystalline solids first buckle elastically, then nucleate atomic-scale, highly stressed ripplocation boundaries – a process driven by redistributing strain from energetically expensive in-plane bonds to cheaper out-of-plane bonds. The consequences are far reaching as the unique mechanical properties of layered crystalline solids are highly dependent upon their ability to deform by kinking. Moreover, the compressive strength of numerous natural and engineered layered systems depends upon the ease of kinking or lack there of.</description><identifier>ISSN: 1369-7021</identifier><identifier>ISSN: 1873-4103</identifier><identifier>EISSN: 1873-4103</identifier><identifier>DOI: 10.1016/j.mattod.2020.11.014</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Chemical Sciences ; Material chemistry</subject><ispartof>Materials today (Kidlington, England), 2021-03, Vol.43, p.45-52</ispartof><rights>2020 The Authors</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-a652b75e3ca9504cfc3c2b1de042017f88ae83c5d5d7c028d02109a05ba1f1f83</citedby><cites>FETCH-LOGICAL-c424t-a652b75e3ca9504cfc3c2b1de042017f88ae83c5d5d7c028d02109a05ba1f1f83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.univ-grenoble-alpes.fr/hal-03318858$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-175720$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Plummer, G.</creatorcontrib><creatorcontrib>Rathod, H.</creatorcontrib><creatorcontrib>Srivastava, A.</creatorcontrib><creatorcontrib>Radovic, M.</creatorcontrib><creatorcontrib>Ouisse, T.</creatorcontrib><creatorcontrib>Yildizhan, M.</creatorcontrib><creatorcontrib>Persson, P.O.Å.</creatorcontrib><creatorcontrib>Lambrinou, K.</creatorcontrib><creatorcontrib>Barsoum, M.W.</creatorcontrib><creatorcontrib>Tucker, G.J.</creatorcontrib><title>On the origin of kinking in layered crystalline solids</title><title>Materials today (Kidlington, England)</title><description>[Display omitted] Kinking is a deformation mechanism ubiquitous to layered systems, ranging from the nanometer scale in layered crystalline solids, to the kilometer scale in geological formations. Herein, we demonstrate its origins in the former through multiscale experiments and atomistic simulations. When compressively loaded parallel to their basal planes, layered crystalline solids first buckle elastically, then nucleate atomic-scale, highly stressed ripplocation boundaries – a process driven by redistributing strain from energetically expensive in-plane bonds to cheaper out-of-plane bonds. The consequences are far reaching as the unique mechanical properties of layered crystalline solids are highly dependent upon their ability to deform by kinking. Moreover, the compressive strength of numerous natural and engineered layered systems depends upon the ease of kinking or lack there of.</description><subject>Chemical Sciences</subject><subject>Material chemistry</subject><issn>1369-7021</issn><issn>1873-4103</issn><issn>1873-4103</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKv_wMNePew6k2x204tQ6keFQi_qNWSTbJu63S3JttJ_b8qK4EUYmA-ed5h5CblFyBCwuN9kW9X3ncko0DjCDDA_IyMUJUtzBHYea1ZM0hIoXpKrEDYAWCLyESmWbdKvbdJ5t3Jt0tXJp2tjrJLYNepovTWJ9sfQq6ZxrU1C1zgTrslFrZpgb37ymLw_P73N5uli-fI6my5SndO8T1XBaVVyy7SacMh1rZmmFRoLOY0X1EIoK5jmhptSAxUmHggTBbxSWGMt2Jikw97wZXf7Su682yp_lJ1y8tF9TGXnV7Jxe4klLylE_m7g16r5A8-nC3maAWMoBBcHjGw-sNp3IXhb_woQ5MlXuZGDr_Lkq0SU0dcoexhkNv59cNbLoJ1ttTXOW91L07n_F3wDCDuB3Q</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Plummer, G.</creator><creator>Rathod, H.</creator><creator>Srivastava, A.</creator><creator>Radovic, M.</creator><creator>Ouisse, T.</creator><creator>Yildizhan, M.</creator><creator>Persson, P.O.Å.</creator><creator>Lambrinou, K.</creator><creator>Barsoum, M.W.</creator><creator>Tucker, G.J.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>ABXSW</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>DG8</scope><scope>ZZAVC</scope></search><sort><creationdate>20210301</creationdate><title>On the origin of kinking in layered crystalline solids</title><author>Plummer, G. ; Rathod, H. ; Srivastava, A. ; Radovic, M. ; Ouisse, T. ; Yildizhan, M. ; Persson, P.O.Å. ; Lambrinou, K. ; Barsoum, M.W. ; Tucker, G.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-a652b75e3ca9504cfc3c2b1de042017f88ae83c5d5d7c028d02109a05ba1f1f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Chemical Sciences</topic><topic>Material chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Plummer, G.</creatorcontrib><creatorcontrib>Rathod, H.</creatorcontrib><creatorcontrib>Srivastava, A.</creatorcontrib><creatorcontrib>Radovic, M.</creatorcontrib><creatorcontrib>Ouisse, T.</creatorcontrib><creatorcontrib>Yildizhan, M.</creatorcontrib><creatorcontrib>Persson, P.O.Å.</creatorcontrib><creatorcontrib>Lambrinou, K.</creatorcontrib><creatorcontrib>Barsoum, M.W.</creatorcontrib><creatorcontrib>Tucker, G.J.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>SWEPUB Linköpings universitet full text</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Linköpings universitet</collection><collection>SwePub Articles full text</collection><jtitle>Materials today (Kidlington, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Plummer, G.</au><au>Rathod, H.</au><au>Srivastava, A.</au><au>Radovic, M.</au><au>Ouisse, T.</au><au>Yildizhan, M.</au><au>Persson, P.O.Å.</au><au>Lambrinou, K.</au><au>Barsoum, M.W.</au><au>Tucker, G.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the origin of kinking in layered crystalline solids</atitle><jtitle>Materials today (Kidlington, England)</jtitle><date>2021-03-01</date><risdate>2021</risdate><volume>43</volume><spage>45</spage><epage>52</epage><pages>45-52</pages><issn>1369-7021</issn><issn>1873-4103</issn><eissn>1873-4103</eissn><abstract>[Display omitted] Kinking is a deformation mechanism ubiquitous to layered systems, ranging from the nanometer scale in layered crystalline solids, to the kilometer scale in geological formations. Herein, we demonstrate its origins in the former through multiscale experiments and atomistic simulations. When compressively loaded parallel to their basal planes, layered crystalline solids first buckle elastically, then nucleate atomic-scale, highly stressed ripplocation boundaries – a process driven by redistributing strain from energetically expensive in-plane bonds to cheaper out-of-plane bonds. The consequences are far reaching as the unique mechanical properties of layered crystalline solids are highly dependent upon their ability to deform by kinking. Moreover, the compressive strength of numerous natural and engineered layered systems depends upon the ease of kinking or lack there of.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.mattod.2020.11.014</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1369-7021
ispartof Materials today (Kidlington, England), 2021-03, Vol.43, p.45-52
issn 1369-7021
1873-4103
1873-4103
language eng
recordid cdi_swepub_primary_oai_DiVA_org_liu_175720
source ScienceDirect Freedom Collection 2022-2024
subjects Chemical Sciences
Material chemistry
title On the origin of kinking in layered crystalline solids
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T20%3A43%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20origin%20of%20kinking%20in%20layered%20crystalline%20solids&rft.jtitle=Materials%20today%20(Kidlington,%20England)&rft.au=Plummer,%20G.&rft.date=2021-03-01&rft.volume=43&rft.spage=45&rft.epage=52&rft.pages=45-52&rft.issn=1369-7021&rft.eissn=1873-4103&rft_id=info:doi/10.1016/j.mattod.2020.11.014&rft_dat=%3Chal_swepu%3Eoai_HAL_hal_03318858v1%3C/hal_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c424t-a652b75e3ca9504cfc3c2b1de042017f88ae83c5d5d7c028d02109a05ba1f1f83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true