Loading…
On the origin of kinking in layered crystalline solids
[Display omitted] Kinking is a deformation mechanism ubiquitous to layered systems, ranging from the nanometer scale in layered crystalline solids, to the kilometer scale in geological formations. Herein, we demonstrate its origins in the former through multiscale experiments and atomistic simulatio...
Saved in:
Published in: | Materials today (Kidlington, England) England), 2021-03, Vol.43, p.45-52 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c424t-a652b75e3ca9504cfc3c2b1de042017f88ae83c5d5d7c028d02109a05ba1f1f83 |
---|---|
cites | cdi_FETCH-LOGICAL-c424t-a652b75e3ca9504cfc3c2b1de042017f88ae83c5d5d7c028d02109a05ba1f1f83 |
container_end_page | 52 |
container_issue | |
container_start_page | 45 |
container_title | Materials today (Kidlington, England) |
container_volume | 43 |
creator | Plummer, G. Rathod, H. Srivastava, A. Radovic, M. Ouisse, T. Yildizhan, M. Persson, P.O.Å. Lambrinou, K. Barsoum, M.W. Tucker, G.J. |
description | [Display omitted]
Kinking is a deformation mechanism ubiquitous to layered systems, ranging from the nanometer scale in layered crystalline solids, to the kilometer scale in geological formations. Herein, we demonstrate its origins in the former through multiscale experiments and atomistic simulations. When compressively loaded parallel to their basal planes, layered crystalline solids first buckle elastically, then nucleate atomic-scale, highly stressed ripplocation boundaries – a process driven by redistributing strain from energetically expensive in-plane bonds to cheaper out-of-plane bonds. The consequences are far reaching as the unique mechanical properties of layered crystalline solids are highly dependent upon their ability to deform by kinking. Moreover, the compressive strength of numerous natural and engineered layered systems depends upon the ease of kinking or lack there of. |
doi_str_mv | 10.1016/j.mattod.2020.11.014 |
format | article |
fullrecord | <record><control><sourceid>hal_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_liu_175720</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1369702120304223</els_id><sourcerecordid>oai_HAL_hal_03318858v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-a652b75e3ca9504cfc3c2b1de042017f88ae83c5d5d7c028d02109a05ba1f1f83</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKv_wMNePew6k2x204tQ6keFQi_qNWSTbJu63S3JttJ_b8qK4EUYmA-ed5h5CblFyBCwuN9kW9X3ncko0DjCDDA_IyMUJUtzBHYea1ZM0hIoXpKrEDYAWCLyESmWbdKvbdJ5t3Jt0tXJp2tjrJLYNepovTWJ9sfQq6ZxrU1C1zgTrslFrZpgb37ymLw_P73N5uli-fI6my5SndO8T1XBaVVyy7SacMh1rZmmFRoLOY0X1EIoK5jmhptSAxUmHggTBbxSWGMt2Jikw97wZXf7Su682yp_lJ1y8tF9TGXnV7Jxe4klLylE_m7g16r5A8-nC3maAWMoBBcHjGw-sNp3IXhb_woQ5MlXuZGDr_Lkq0SU0dcoexhkNv59cNbLoJ1ttTXOW91L07n_F3wDCDuB3Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the origin of kinking in layered crystalline solids</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Plummer, G. ; Rathod, H. ; Srivastava, A. ; Radovic, M. ; Ouisse, T. ; Yildizhan, M. ; Persson, P.O.Å. ; Lambrinou, K. ; Barsoum, M.W. ; Tucker, G.J.</creator><creatorcontrib>Plummer, G. ; Rathod, H. ; Srivastava, A. ; Radovic, M. ; Ouisse, T. ; Yildizhan, M. ; Persson, P.O.Å. ; Lambrinou, K. ; Barsoum, M.W. ; Tucker, G.J.</creatorcontrib><description>[Display omitted]
Kinking is a deformation mechanism ubiquitous to layered systems, ranging from the nanometer scale in layered crystalline solids, to the kilometer scale in geological formations. Herein, we demonstrate its origins in the former through multiscale experiments and atomistic simulations. When compressively loaded parallel to their basal planes, layered crystalline solids first buckle elastically, then nucleate atomic-scale, highly stressed ripplocation boundaries – a process driven by redistributing strain from energetically expensive in-plane bonds to cheaper out-of-plane bonds. The consequences are far reaching as the unique mechanical properties of layered crystalline solids are highly dependent upon their ability to deform by kinking. Moreover, the compressive strength of numerous natural and engineered layered systems depends upon the ease of kinking or lack there of.</description><identifier>ISSN: 1369-7021</identifier><identifier>ISSN: 1873-4103</identifier><identifier>EISSN: 1873-4103</identifier><identifier>DOI: 10.1016/j.mattod.2020.11.014</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Chemical Sciences ; Material chemistry</subject><ispartof>Materials today (Kidlington, England), 2021-03, Vol.43, p.45-52</ispartof><rights>2020 The Authors</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-a652b75e3ca9504cfc3c2b1de042017f88ae83c5d5d7c028d02109a05ba1f1f83</citedby><cites>FETCH-LOGICAL-c424t-a652b75e3ca9504cfc3c2b1de042017f88ae83c5d5d7c028d02109a05ba1f1f83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.univ-grenoble-alpes.fr/hal-03318858$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-175720$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Plummer, G.</creatorcontrib><creatorcontrib>Rathod, H.</creatorcontrib><creatorcontrib>Srivastava, A.</creatorcontrib><creatorcontrib>Radovic, M.</creatorcontrib><creatorcontrib>Ouisse, T.</creatorcontrib><creatorcontrib>Yildizhan, M.</creatorcontrib><creatorcontrib>Persson, P.O.Å.</creatorcontrib><creatorcontrib>Lambrinou, K.</creatorcontrib><creatorcontrib>Barsoum, M.W.</creatorcontrib><creatorcontrib>Tucker, G.J.</creatorcontrib><title>On the origin of kinking in layered crystalline solids</title><title>Materials today (Kidlington, England)</title><description>[Display omitted]
Kinking is a deformation mechanism ubiquitous to layered systems, ranging from the nanometer scale in layered crystalline solids, to the kilometer scale in geological formations. Herein, we demonstrate its origins in the former through multiscale experiments and atomistic simulations. When compressively loaded parallel to their basal planes, layered crystalline solids first buckle elastically, then nucleate atomic-scale, highly stressed ripplocation boundaries – a process driven by redistributing strain from energetically expensive in-plane bonds to cheaper out-of-plane bonds. The consequences are far reaching as the unique mechanical properties of layered crystalline solids are highly dependent upon their ability to deform by kinking. Moreover, the compressive strength of numerous natural and engineered layered systems depends upon the ease of kinking or lack there of.</description><subject>Chemical Sciences</subject><subject>Material chemistry</subject><issn>1369-7021</issn><issn>1873-4103</issn><issn>1873-4103</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKv_wMNePew6k2x204tQ6keFQi_qNWSTbJu63S3JttJ_b8qK4EUYmA-ed5h5CblFyBCwuN9kW9X3ncko0DjCDDA_IyMUJUtzBHYea1ZM0hIoXpKrEDYAWCLyESmWbdKvbdJ5t3Jt0tXJp2tjrJLYNepovTWJ9sfQq6ZxrU1C1zgTrslFrZpgb37ymLw_P73N5uli-fI6my5SndO8T1XBaVVyy7SacMh1rZmmFRoLOY0X1EIoK5jmhptSAxUmHggTBbxSWGMt2Jikw97wZXf7Su682yp_lJ1y8tF9TGXnV7Jxe4klLylE_m7g16r5A8-nC3maAWMoBBcHjGw-sNp3IXhb_woQ5MlXuZGDr_Lkq0SU0dcoexhkNv59cNbLoJ1ttTXOW91L07n_F3wDCDuB3Q</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Plummer, G.</creator><creator>Rathod, H.</creator><creator>Srivastava, A.</creator><creator>Radovic, M.</creator><creator>Ouisse, T.</creator><creator>Yildizhan, M.</creator><creator>Persson, P.O.Å.</creator><creator>Lambrinou, K.</creator><creator>Barsoum, M.W.</creator><creator>Tucker, G.J.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>ABXSW</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>DG8</scope><scope>ZZAVC</scope></search><sort><creationdate>20210301</creationdate><title>On the origin of kinking in layered crystalline solids</title><author>Plummer, G. ; Rathod, H. ; Srivastava, A. ; Radovic, M. ; Ouisse, T. ; Yildizhan, M. ; Persson, P.O.Å. ; Lambrinou, K. ; Barsoum, M.W. ; Tucker, G.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-a652b75e3ca9504cfc3c2b1de042017f88ae83c5d5d7c028d02109a05ba1f1f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Chemical Sciences</topic><topic>Material chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Plummer, G.</creatorcontrib><creatorcontrib>Rathod, H.</creatorcontrib><creatorcontrib>Srivastava, A.</creatorcontrib><creatorcontrib>Radovic, M.</creatorcontrib><creatorcontrib>Ouisse, T.</creatorcontrib><creatorcontrib>Yildizhan, M.</creatorcontrib><creatorcontrib>Persson, P.O.Å.</creatorcontrib><creatorcontrib>Lambrinou, K.</creatorcontrib><creatorcontrib>Barsoum, M.W.</creatorcontrib><creatorcontrib>Tucker, G.J.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>SWEPUB Linköpings universitet full text</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Linköpings universitet</collection><collection>SwePub Articles full text</collection><jtitle>Materials today (Kidlington, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Plummer, G.</au><au>Rathod, H.</au><au>Srivastava, A.</au><au>Radovic, M.</au><au>Ouisse, T.</au><au>Yildizhan, M.</au><au>Persson, P.O.Å.</au><au>Lambrinou, K.</au><au>Barsoum, M.W.</au><au>Tucker, G.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the origin of kinking in layered crystalline solids</atitle><jtitle>Materials today (Kidlington, England)</jtitle><date>2021-03-01</date><risdate>2021</risdate><volume>43</volume><spage>45</spage><epage>52</epage><pages>45-52</pages><issn>1369-7021</issn><issn>1873-4103</issn><eissn>1873-4103</eissn><abstract>[Display omitted]
Kinking is a deformation mechanism ubiquitous to layered systems, ranging from the nanometer scale in layered crystalline solids, to the kilometer scale in geological formations. Herein, we demonstrate its origins in the former through multiscale experiments and atomistic simulations. When compressively loaded parallel to their basal planes, layered crystalline solids first buckle elastically, then nucleate atomic-scale, highly stressed ripplocation boundaries – a process driven by redistributing strain from energetically expensive in-plane bonds to cheaper out-of-plane bonds. The consequences are far reaching as the unique mechanical properties of layered crystalline solids are highly dependent upon their ability to deform by kinking. Moreover, the compressive strength of numerous natural and engineered layered systems depends upon the ease of kinking or lack there of.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.mattod.2020.11.014</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1369-7021 |
ispartof | Materials today (Kidlington, England), 2021-03, Vol.43, p.45-52 |
issn | 1369-7021 1873-4103 1873-4103 |
language | eng |
recordid | cdi_swepub_primary_oai_DiVA_org_liu_175720 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Chemical Sciences Material chemistry |
title | On the origin of kinking in layered crystalline solids |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T20%3A43%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20origin%20of%20kinking%20in%20layered%20crystalline%20solids&rft.jtitle=Materials%20today%20(Kidlington,%20England)&rft.au=Plummer,%20G.&rft.date=2021-03-01&rft.volume=43&rft.spage=45&rft.epage=52&rft.pages=45-52&rft.issn=1369-7021&rft.eissn=1873-4103&rft_id=info:doi/10.1016/j.mattod.2020.11.014&rft_dat=%3Chal_swepu%3Eoai_HAL_hal_03318858v1%3C/hal_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c424t-a652b75e3ca9504cfc3c2b1de042017f88ae83c5d5d7c028d02109a05ba1f1f83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |