Loading…

Understanding the Role of Triplet‐Triplet Annihilation in Non‐Fullerene Acceptor Organic Solar Cells

Non‐fullerene acceptors (NFAs) have enabled power conversion efficiencies exceeding 19% in organic solar cells (OSCs). However, the open‐circuit voltage of OSCs remains low relative to their optical gap due to excessive non‐radiative recombination, and this now limits performance. Here, an important...

Full description

Saved in:
Bibliographic Details
Published in:Advanced energy materials 2023-09, Vol.13 (36), p.n/a
Main Authors: Hart, Lucy J. F., Grüne, Jeannine, Liu, Wei, Lau, Tsz‐ki, Luke, Joel, Chin, Yi‐Chun, Jiang, Xinyu, Zhang, Huotian, Sowood, Daniel J. C., Unson, Darcy M. L., Kim, Ji‐Seon, Lu, Xinhui, Zou, Yingping, Gao, Feng, Sperlich, Andreas, Dyakonov, Vladimir, Yuan, Jun, Gillett, Alexander J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4337-52b3df2116891090d5c1ef26967a7e896df7ea3d52f540affcd171c41c13237e3
cites cdi_FETCH-LOGICAL-c4337-52b3df2116891090d5c1ef26967a7e896df7ea3d52f540affcd171c41c13237e3
container_end_page n/a
container_issue 36
container_start_page
container_title Advanced energy materials
container_volume 13
creator Hart, Lucy J. F.
Grüne, Jeannine
Liu, Wei
Lau, Tsz‐ki
Luke, Joel
Chin, Yi‐Chun
Jiang, Xinyu
Zhang, Huotian
Sowood, Daniel J. C.
Unson, Darcy M. L.
Kim, Ji‐Seon
Lu, Xinhui
Zou, Yingping
Gao, Feng
Sperlich, Andreas
Dyakonov, Vladimir
Yuan, Jun
Gillett, Alexander J.
description Non‐fullerene acceptors (NFAs) have enabled power conversion efficiencies exceeding 19% in organic solar cells (OSCs). However, the open‐circuit voltage of OSCs remains low relative to their optical gap due to excessive non‐radiative recombination, and this now limits performance. Here, an important aspect of OSC design is considered, namely management of the triplet exciton population formed after non‐geminate charge recombination. By comparing the blends PM6:Y11 and PM6:Y6, it is shown that the greater crystallinity of the NFA domains in PM6:Y11 leads to a higher rate of triplet‐triplet annihilation (TTA). This is attributed to the four times larger ground state dipole moment of Y11 versus Y6, which improves the long range NFA out‐of‐plane ordering. Since TTA converts a fraction of the non‐emissive triplet states into bright singlet states, it has the potential to reduce non‐radiative voltage losses. Through a kinetic analysis of the recombination processes under 1‐Sun illumination, a framework is provided for determining the conditions under which TTA may improve OSC performance. If these could be satisfied, TTA has the potential to reduce non‐radiative voltage losses by up to several tens of millivolts. In this work, the role of triplet‐triplet annihilation in organic solar cells is examined. It is shown that improving the crystallinity of the non‐fullerene acceptor domains can enhance the rate of triplet‐triplet annihilation. The potential for triplet‐triplet annihilation to improve the performance of organic solar cells is then considered where, in certain scenarios, it can improve the open circuit voltage by several tens of millivolts.
doi_str_mv 10.1002/aenm.202301357
format article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_liu_210896</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2867033289</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4337-52b3df2116891090d5c1ef26967a7e896df7ea3d52f540affcd171c41c13237e3</originalsourceid><addsrcrecordid>eNqNkc1O3DAUhaOKSiBgy9pS1xl87SROltEABYkfqYVuLeNczxgZO9iJRux4BJ6xT1KjQdNl642P5O8c3etTFCdAF0ApO1XonxeMMk6B1-JLcQANVGXTVnRvpznbL45TeqL5VB1Qzg-K9YMfMKZJ-cH6FZnWSH4EhyQYch_t6HD6_fb-qUjvvV1bpyYbPLGe3AafXy9m5zCiR9JrjeMUIrmLK-WtJj-DU5Es0bl0VHw1yiU8_rwPi4eL8_vlZXl99_1q2V-XuuJclDV75INhAE2bJ-zoUGtAw5quEUpg2zWDEaj4UDNTV1QZowcQoCvQwBkXyA-LcpubNjjOj3KM9lnFVxmUlWf2Vy9DXElnZ8mA5rj_56ETNVSZ_7blxxheZkyTfApz9HklydpG5E9lbZepxZbSMaQU0exygcqPwuRHYXJXWDZ0W8PGOnz9By3789ubv94_I6mcEg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2867033289</pqid></control><display><type>article</type><title>Understanding the Role of Triplet‐Triplet Annihilation in Non‐Fullerene Acceptor Organic Solar Cells</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Hart, Lucy J. F. ; Grüne, Jeannine ; Liu, Wei ; Lau, Tsz‐ki ; Luke, Joel ; Chin, Yi‐Chun ; Jiang, Xinyu ; Zhang, Huotian ; Sowood, Daniel J. C. ; Unson, Darcy M. L. ; Kim, Ji‐Seon ; Lu, Xinhui ; Zou, Yingping ; Gao, Feng ; Sperlich, Andreas ; Dyakonov, Vladimir ; Yuan, Jun ; Gillett, Alexander J.</creator><creatorcontrib>Hart, Lucy J. F. ; Grüne, Jeannine ; Liu, Wei ; Lau, Tsz‐ki ; Luke, Joel ; Chin, Yi‐Chun ; Jiang, Xinyu ; Zhang, Huotian ; Sowood, Daniel J. C. ; Unson, Darcy M. L. ; Kim, Ji‐Seon ; Lu, Xinhui ; Zou, Yingping ; Gao, Feng ; Sperlich, Andreas ; Dyakonov, Vladimir ; Yuan, Jun ; Gillett, Alexander J.</creatorcontrib><description>Non‐fullerene acceptors (NFAs) have enabled power conversion efficiencies exceeding 19% in organic solar cells (OSCs). However, the open‐circuit voltage of OSCs remains low relative to their optical gap due to excessive non‐radiative recombination, and this now limits performance. Here, an important aspect of OSC design is considered, namely management of the triplet exciton population formed after non‐geminate charge recombination. By comparing the blends PM6:Y11 and PM6:Y6, it is shown that the greater crystallinity of the NFA domains in PM6:Y11 leads to a higher rate of triplet‐triplet annihilation (TTA). This is attributed to the four times larger ground state dipole moment of Y11 versus Y6, which improves the long range NFA out‐of‐plane ordering. Since TTA converts a fraction of the non‐emissive triplet states into bright singlet states, it has the potential to reduce non‐radiative voltage losses. Through a kinetic analysis of the recombination processes under 1‐Sun illumination, a framework is provided for determining the conditions under which TTA may improve OSC performance. If these could be satisfied, TTA has the potential to reduce non‐radiative voltage losses by up to several tens of millivolts. In this work, the role of triplet‐triplet annihilation in organic solar cells is examined. It is shown that improving the crystallinity of the non‐fullerene acceptor domains can enhance the rate of triplet‐triplet annihilation. The potential for triplet‐triplet annihilation to improve the performance of organic solar cells is then considered where, in certain scenarios, it can improve the open circuit voltage by several tens of millivolts.</description><identifier>ISSN: 1614-6832</identifier><identifier>ISSN: 1614-6840</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.202301357</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Circuits ; Dipole moments ; Electric potential ; Energy conversion efficiency ; Excitons ; Fullerenes ; non‐radiative voltage losses ; organic solar cells ; photoluminescence‐detected magnetic resonance ; Photovoltaic cells ; Radiative recombination ; Solar cells ; transient absorption ; triplet excitons ; triplet‐triplet annihilation ; Voltage</subject><ispartof>Advanced energy materials, 2023-09, Vol.13 (36), p.n/a</ispartof><rights>2023 The Authors. Advanced Energy Materials published by Wiley‐VCH GmbH</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4337-52b3df2116891090d5c1ef26967a7e896df7ea3d52f540affcd171c41c13237e3</citedby><cites>FETCH-LOGICAL-c4337-52b3df2116891090d5c1ef26967a7e896df7ea3d52f540affcd171c41c13237e3</cites><orcidid>0000-0001-7572-7333 ; 0000-0002-6269-4672</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-197514$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-210896$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Hart, Lucy J. F.</creatorcontrib><creatorcontrib>Grüne, Jeannine</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Lau, Tsz‐ki</creatorcontrib><creatorcontrib>Luke, Joel</creatorcontrib><creatorcontrib>Chin, Yi‐Chun</creatorcontrib><creatorcontrib>Jiang, Xinyu</creatorcontrib><creatorcontrib>Zhang, Huotian</creatorcontrib><creatorcontrib>Sowood, Daniel J. C.</creatorcontrib><creatorcontrib>Unson, Darcy M. L.</creatorcontrib><creatorcontrib>Kim, Ji‐Seon</creatorcontrib><creatorcontrib>Lu, Xinhui</creatorcontrib><creatorcontrib>Zou, Yingping</creatorcontrib><creatorcontrib>Gao, Feng</creatorcontrib><creatorcontrib>Sperlich, Andreas</creatorcontrib><creatorcontrib>Dyakonov, Vladimir</creatorcontrib><creatorcontrib>Yuan, Jun</creatorcontrib><creatorcontrib>Gillett, Alexander J.</creatorcontrib><title>Understanding the Role of Triplet‐Triplet Annihilation in Non‐Fullerene Acceptor Organic Solar Cells</title><title>Advanced energy materials</title><description>Non‐fullerene acceptors (NFAs) have enabled power conversion efficiencies exceeding 19% in organic solar cells (OSCs). However, the open‐circuit voltage of OSCs remains low relative to their optical gap due to excessive non‐radiative recombination, and this now limits performance. Here, an important aspect of OSC design is considered, namely management of the triplet exciton population formed after non‐geminate charge recombination. By comparing the blends PM6:Y11 and PM6:Y6, it is shown that the greater crystallinity of the NFA domains in PM6:Y11 leads to a higher rate of triplet‐triplet annihilation (TTA). This is attributed to the four times larger ground state dipole moment of Y11 versus Y6, which improves the long range NFA out‐of‐plane ordering. Since TTA converts a fraction of the non‐emissive triplet states into bright singlet states, it has the potential to reduce non‐radiative voltage losses. Through a kinetic analysis of the recombination processes under 1‐Sun illumination, a framework is provided for determining the conditions under which TTA may improve OSC performance. If these could be satisfied, TTA has the potential to reduce non‐radiative voltage losses by up to several tens of millivolts. In this work, the role of triplet‐triplet annihilation in organic solar cells is examined. It is shown that improving the crystallinity of the non‐fullerene acceptor domains can enhance the rate of triplet‐triplet annihilation. The potential for triplet‐triplet annihilation to improve the performance of organic solar cells is then considered where, in certain scenarios, it can improve the open circuit voltage by several tens of millivolts.</description><subject>Circuits</subject><subject>Dipole moments</subject><subject>Electric potential</subject><subject>Energy conversion efficiency</subject><subject>Excitons</subject><subject>Fullerenes</subject><subject>non‐radiative voltage losses</subject><subject>organic solar cells</subject><subject>photoluminescence‐detected magnetic resonance</subject><subject>Photovoltaic cells</subject><subject>Radiative recombination</subject><subject>Solar cells</subject><subject>transient absorption</subject><subject>triplet excitons</subject><subject>triplet‐triplet annihilation</subject><subject>Voltage</subject><issn>1614-6832</issn><issn>1614-6840</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqNkc1O3DAUhaOKSiBgy9pS1xl87SROltEABYkfqYVuLeNczxgZO9iJRux4BJ6xT1KjQdNl642P5O8c3etTFCdAF0ApO1XonxeMMk6B1-JLcQANVGXTVnRvpznbL45TeqL5VB1Qzg-K9YMfMKZJ-cH6FZnWSH4EhyQYch_t6HD6_fb-qUjvvV1bpyYbPLGe3AafXy9m5zCiR9JrjeMUIrmLK-WtJj-DU5Es0bl0VHw1yiU8_rwPi4eL8_vlZXl99_1q2V-XuuJclDV75INhAE2bJ-zoUGtAw5quEUpg2zWDEaj4UDNTV1QZowcQoCvQwBkXyA-LcpubNjjOj3KM9lnFVxmUlWf2Vy9DXElnZ8mA5rj_56ETNVSZ_7blxxheZkyTfApz9HklydpG5E9lbZepxZbSMaQU0exygcqPwuRHYXJXWDZ0W8PGOnz9By3789ubv94_I6mcEg</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Hart, Lucy J. F.</creator><creator>Grüne, Jeannine</creator><creator>Liu, Wei</creator><creator>Lau, Tsz‐ki</creator><creator>Luke, Joel</creator><creator>Chin, Yi‐Chun</creator><creator>Jiang, Xinyu</creator><creator>Zhang, Huotian</creator><creator>Sowood, Daniel J. C.</creator><creator>Unson, Darcy M. L.</creator><creator>Kim, Ji‐Seon</creator><creator>Lu, Xinhui</creator><creator>Zou, Yingping</creator><creator>Gao, Feng</creator><creator>Sperlich, Andreas</creator><creator>Dyakonov, Vladimir</creator><creator>Yuan, Jun</creator><creator>Gillett, Alexander J.</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>ABXSW</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>DG8</scope><scope>ZZAVC</scope><orcidid>https://orcid.org/0000-0001-7572-7333</orcidid><orcidid>https://orcid.org/0000-0002-6269-4672</orcidid></search><sort><creationdate>20230901</creationdate><title>Understanding the Role of Triplet‐Triplet Annihilation in Non‐Fullerene Acceptor Organic Solar Cells</title><author>Hart, Lucy J. F. ; Grüne, Jeannine ; Liu, Wei ; Lau, Tsz‐ki ; Luke, Joel ; Chin, Yi‐Chun ; Jiang, Xinyu ; Zhang, Huotian ; Sowood, Daniel J. C. ; Unson, Darcy M. L. ; Kim, Ji‐Seon ; Lu, Xinhui ; Zou, Yingping ; Gao, Feng ; Sperlich, Andreas ; Dyakonov, Vladimir ; Yuan, Jun ; Gillett, Alexander J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4337-52b3df2116891090d5c1ef26967a7e896df7ea3d52f540affcd171c41c13237e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Circuits</topic><topic>Dipole moments</topic><topic>Electric potential</topic><topic>Energy conversion efficiency</topic><topic>Excitons</topic><topic>Fullerenes</topic><topic>non‐radiative voltage losses</topic><topic>organic solar cells</topic><topic>photoluminescence‐detected magnetic resonance</topic><topic>Photovoltaic cells</topic><topic>Radiative recombination</topic><topic>Solar cells</topic><topic>transient absorption</topic><topic>triplet excitons</topic><topic>triplet‐triplet annihilation</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hart, Lucy J. F.</creatorcontrib><creatorcontrib>Grüne, Jeannine</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Lau, Tsz‐ki</creatorcontrib><creatorcontrib>Luke, Joel</creatorcontrib><creatorcontrib>Chin, Yi‐Chun</creatorcontrib><creatorcontrib>Jiang, Xinyu</creatorcontrib><creatorcontrib>Zhang, Huotian</creatorcontrib><creatorcontrib>Sowood, Daniel J. C.</creatorcontrib><creatorcontrib>Unson, Darcy M. L.</creatorcontrib><creatorcontrib>Kim, Ji‐Seon</creatorcontrib><creatorcontrib>Lu, Xinhui</creatorcontrib><creatorcontrib>Zou, Yingping</creatorcontrib><creatorcontrib>Gao, Feng</creatorcontrib><creatorcontrib>Sperlich, Andreas</creatorcontrib><creatorcontrib>Dyakonov, Vladimir</creatorcontrib><creatorcontrib>Yuan, Jun</creatorcontrib><creatorcontrib>Gillett, Alexander J.</creatorcontrib><collection>Wiley Open Access</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>SWEPUB Linköpings universitet full text</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Linköpings universitet</collection><collection>SwePub Articles full text</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hart, Lucy J. F.</au><au>Grüne, Jeannine</au><au>Liu, Wei</au><au>Lau, Tsz‐ki</au><au>Luke, Joel</au><au>Chin, Yi‐Chun</au><au>Jiang, Xinyu</au><au>Zhang, Huotian</au><au>Sowood, Daniel J. C.</au><au>Unson, Darcy M. L.</au><au>Kim, Ji‐Seon</au><au>Lu, Xinhui</au><au>Zou, Yingping</au><au>Gao, Feng</au><au>Sperlich, Andreas</au><au>Dyakonov, Vladimir</au><au>Yuan, Jun</au><au>Gillett, Alexander J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Understanding the Role of Triplet‐Triplet Annihilation in Non‐Fullerene Acceptor Organic Solar Cells</atitle><jtitle>Advanced energy materials</jtitle><date>2023-09-01</date><risdate>2023</risdate><volume>13</volume><issue>36</issue><epage>n/a</epage><issn>1614-6832</issn><issn>1614-6840</issn><eissn>1614-6840</eissn><abstract>Non‐fullerene acceptors (NFAs) have enabled power conversion efficiencies exceeding 19% in organic solar cells (OSCs). However, the open‐circuit voltage of OSCs remains low relative to their optical gap due to excessive non‐radiative recombination, and this now limits performance. Here, an important aspect of OSC design is considered, namely management of the triplet exciton population formed after non‐geminate charge recombination. By comparing the blends PM6:Y11 and PM6:Y6, it is shown that the greater crystallinity of the NFA domains in PM6:Y11 leads to a higher rate of triplet‐triplet annihilation (TTA). This is attributed to the four times larger ground state dipole moment of Y11 versus Y6, which improves the long range NFA out‐of‐plane ordering. Since TTA converts a fraction of the non‐emissive triplet states into bright singlet states, it has the potential to reduce non‐radiative voltage losses. Through a kinetic analysis of the recombination processes under 1‐Sun illumination, a framework is provided for determining the conditions under which TTA may improve OSC performance. If these could be satisfied, TTA has the potential to reduce non‐radiative voltage losses by up to several tens of millivolts. In this work, the role of triplet‐triplet annihilation in organic solar cells is examined. It is shown that improving the crystallinity of the non‐fullerene acceptor domains can enhance the rate of triplet‐triplet annihilation. The potential for triplet‐triplet annihilation to improve the performance of organic solar cells is then considered where, in certain scenarios, it can improve the open circuit voltage by several tens of millivolts.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.202301357</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-7572-7333</orcidid><orcidid>https://orcid.org/0000-0002-6269-4672</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1614-6832
ispartof Advanced energy materials, 2023-09, Vol.13 (36), p.n/a
issn 1614-6832
1614-6840
1614-6840
language eng
recordid cdi_swepub_primary_oai_DiVA_org_liu_210896
source Wiley-Blackwell Read & Publish Collection
subjects Circuits
Dipole moments
Electric potential
Energy conversion efficiency
Excitons
Fullerenes
non‐radiative voltage losses
organic solar cells
photoluminescence‐detected magnetic resonance
Photovoltaic cells
Radiative recombination
Solar cells
transient absorption
triplet excitons
triplet‐triplet annihilation
Voltage
title Understanding the Role of Triplet‐Triplet Annihilation in Non‐Fullerene Acceptor Organic Solar Cells
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T16%3A57%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Understanding%20the%20Role%20of%20Triplet%E2%80%90Triplet%20Annihilation%20in%20Non%E2%80%90Fullerene%20Acceptor%20Organic%20Solar%20Cells&rft.jtitle=Advanced%20energy%20materials&rft.au=Hart,%20Lucy%20J.%20F.&rft.date=2023-09-01&rft.volume=13&rft.issue=36&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.202301357&rft_dat=%3Cproquest_swepu%3E2867033289%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4337-52b3df2116891090d5c1ef26967a7e896df7ea3d52f540affcd171c41c13237e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2867033289&rft_id=info:pmid/&rfr_iscdi=true