Loading…
Site-controlled single quantum wire integrated into a photonic-crystal membrane microcavity
Integration of a site-controlled semiconductor V-groove quantum wire (QWR) into a photonic-crystal (PhC) membrane microcavity is reported. Reproducible coupling of the QWR emission to a mode of the PhC cavity is evidenced by the narrower linewidth, higher intensity, and variation with temperature an...
Saved in:
Published in: | Applied physics letters 2007-04, Vol.90 (15), p.153107-153107-3 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Integration of a site-controlled semiconductor V-groove quantum wire (QWR) into a photonic-crystal (PhC) membrane microcavity is reported. Reproducible coupling of the QWR emission to a mode of the PhC cavity is evidenced by the narrower linewidth, higher intensity, and variation with temperature and PhC parameters of the QWR line. Finite difference time domain simulations of the cavity are employed for identifying the observed mode. The presented PhC-QWR coupled structures are promising for achieving very low-threshold lasers and for studies of one-dimensional photon-exciton coupled systems. |
---|---|
ISSN: | 0003-6951 1077-3118 1077-3118 |
DOI: | 10.1063/1.2721864 |