Loading…

Hybrid interfaces of conjugate polymers: Band edge alignment studied by ultraviolet photoelectron spectroscopy

The control of hybrid interfaces in polymer-based electronic devices may be enabling in many applications. The engineering of hybrid interface involves (requires) an understanding of the electronic structure of materials—one organic and one inorganic—that form the two halves of hybrid interfaces, as...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials research 2004-07, Vol.19 (7), p.1917-1923
Main Authors: Salaneck, W.R., Fahlman, M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The control of hybrid interfaces in polymer-based electronic devices may be enabling in many applications. The engineering of hybrid interface involves (requires) an understanding of the electronic structure of materials—one organic and one inorganic—that form the two halves of hybrid interfaces, as well as the electronic and chemical consequences of the coupling of the two. Although much literature exists describing the interfaces between vapor-deposited organic molecules and model molecules for polymers on the surfaces of clean metals in ultrahigh vacuum, few studies have been reported on spin-coated, semiconducting polymer films on realistic substrates. Spin coating in an inert atmosphere (or even air) is a central part of the process of the fabrication of polymer-based light-emitting devices and other modern polymer-based electronic components. Here, work on the electronic structure of semiconducting (conjugated) polymer films spin-coated onto selected inorganic substrates, carried out using ultraviolet photoelectron spectroscopy, is reviewed and summarized to generate a generalized picture of the hybrid interfaces formed under realistic device fabrication conditions.
ISSN:0884-2914
2044-5326
2044-5326
DOI:10.1557/JMR.2004.0262