Loading…

Structure of tert-Butyl Carbamate-Terminated Thiol Chemisorbed to Gold

Monolayers of tert-butyl carbamate-terminated thiol were formed by adsorption of the molecules onto polycrystalline gold substrate. The adsorbates were studied using techniques as X-ray photoelectron spectroscopy (XPS), near-edge X-ray absorption fine structure spectroscopy (NEXAFS), and infrared re...

Full description

Saved in:
Bibliographic Details
Published in:The journal of physical chemistry. B 2005-08, Vol.109 (33), p.16040-16046
Main Authors: Petoral, Rodrigo M, Uvdal, Kajsa
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Monolayers of tert-butyl carbamate-terminated thiol were formed by adsorption of the molecules onto polycrystalline gold substrate. The adsorbates were studied using techniques as X-ray photoelectron spectroscopy (XPS), near-edge X-ray absorption fine structure spectroscopy (NEXAFS), and infrared reflection−absorption spectroscopy (IRAS). The results provide the electronic structure, composition, characteristic fingerprint, and orientation of the molecular adsorbate. XPS verified that the thiolate group is chemically bonded to the gold surface and that a complete chemisorption of the molecule occurs. Elemental depth profiling by varying the excitation energy in XPS supports the angle-dependent XPS results. Both techniques showed that the tert-butyl group is oriented away from the gold surface. A nearly parallel orientation of the carbonyl group relative to the gold surface is deduced from the IRAS results. The main molecular axis is estimated to have an average tilt angle of about 38° relative to the gold surface normal on the basis of the NEXAFS results. Cyclic voltammetry indicates a less blocking capability of the adsorbates. Overall, the molecules are oriented in an upright manner with indications of presence of pinholes and/or defects possibly due to steric hindrance of the bulky tert-butyl group. This molecular system is envisioned to be of use for surface-based organic synthesis on gold substrates.
ISSN:1520-6106
1520-5207
1520-5207
DOI:10.1021/jp0526445