Loading…
Spreading of neurodegenerative pathology via neuron-to-neuron transmission of β-amyloid
Alzheimer's disease (AD) is the major cause of dementia. During the development of AD, neurofibrillary tangles progress in a fixed pattern, starting in the transentorhinal cortex followed by the hippocampus and cortical areas. In contrast, the deposition of β-amyloid (Aβ) plaques, which are the...
Saved in:
Published in: | The Journal of neuroscience 2012-06, Vol.32 (26), p.8767-8777 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 8777 |
container_issue | 26 |
container_start_page | 8767 |
container_title | The Journal of neuroscience |
container_volume | 32 |
creator | Nath, Sangeeta Agholme, Lotta Kurudenkandy, Firoz Roshan Granseth, Björn Marcusson, Jan Hallbeck, Martin |
description | Alzheimer's disease (AD) is the major cause of dementia. During the development of AD, neurofibrillary tangles progress in a fixed pattern, starting in the transentorhinal cortex followed by the hippocampus and cortical areas. In contrast, the deposition of β-amyloid (Aβ) plaques, which are the other histological hallmark of AD, does not follow the same strict spatiotemporal pattern, and it correlates poorly with cognitive decline. Instead, soluble Aβ oligomers have received increasing attention as probable inducers of pathogenesis. In this study, we use microinjections into electrophysiologically defined primary hippocampal rat neurons to demonstrate the direct neuron-to-neuron transfer of soluble oligomeric Aβ. Additional studies conducted in a human donor-acceptor cell model show that this Aβ transfer depends on direct cellular connections. As the transferred oligomers accumulate, acceptor cells gradually show beading of tubulin, a sign of neurite damage, and gradual endosomal leakage, a sign of cytotoxicity. These observations support that intracellular Aβ oligomers play a role in neurodegeneration, and they explain the manner in which Aβ can drive disease progression, even if the extracellular plaque load is poorly correlated with the degree of cognitive decline. Understanding this phenomenon sheds light on the pathophysiological mechanism of AD progression. Additional elucidation will help uncover the detailed mechanisms responsible for the manner in which AD progresses via anatomical connections and will facilitate the development of new strategies for stopping the progression of this incapacitating disease. |
doi_str_mv | 10.1523/JNEUROSCI.0615-12.2012 |
format | article |
fullrecord | <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_liu_79695</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1551616840</sourcerecordid><originalsourceid>FETCH-LOGICAL-p374t-1952be75cd34b78b9f33d83a5ed0b02ffe38f8b796ccaa7ae16f52f2f7084b263</originalsourceid><addsrcrecordid>eNpVkMtOwzAQRS0E4lH4hSpLFqT4EcfJBgmV8hKiEqWIneUk42CUxiFOivpbfAjfhFELgtXM6N45VzMIDQkeEU7Z6e39ZP4wnY1vRjgmPCR0RDGhW2jfq2lII0y2__R76MC5V4yxwETsoj1KRcQjke6j51nTgipMXQZWBzX0rS2ghBpa1ZklBI3qXmxly1WwNGqt12Fnw3UXdK2q3cI4Z_zgAZ8foVqsKmuKQ7SjVeXgaFMHaH45eRxfh3fTq5vx-V3YMBF1IUk5zUDwvGBRJpIs1YwVCVMcCpxhqjWwRCeZSOM8V0ooILHmVFMtcBJlNGYDdLLmundo-kw2rVmodiWtMvLCPJ1L25ayMr30iJR7-9na7r0LKHKo_QnVv63_Sm1eZGmXMo4pZewbcLwBtPatB9dJf34OVaVqsL2ThHMSkziJsLcO_2b9hvx8n30BIdONLg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1551616840</pqid></control><display><type>article</type><title>Spreading of neurodegenerative pathology via neuron-to-neuron transmission of β-amyloid</title><source>Open Access: PubMed Central</source><creator>Nath, Sangeeta ; Agholme, Lotta ; Kurudenkandy, Firoz Roshan ; Granseth, Björn ; Marcusson, Jan ; Hallbeck, Martin</creator><creatorcontrib>Nath, Sangeeta ; Agholme, Lotta ; Kurudenkandy, Firoz Roshan ; Granseth, Björn ; Marcusson, Jan ; Hallbeck, Martin</creatorcontrib><description>Alzheimer's disease (AD) is the major cause of dementia. During the development of AD, neurofibrillary tangles progress in a fixed pattern, starting in the transentorhinal cortex followed by the hippocampus and cortical areas. In contrast, the deposition of β-amyloid (Aβ) plaques, which are the other histological hallmark of AD, does not follow the same strict spatiotemporal pattern, and it correlates poorly with cognitive decline. Instead, soluble Aβ oligomers have received increasing attention as probable inducers of pathogenesis. In this study, we use microinjections into electrophysiologically defined primary hippocampal rat neurons to demonstrate the direct neuron-to-neuron transfer of soluble oligomeric Aβ. Additional studies conducted in a human donor-acceptor cell model show that this Aβ transfer depends on direct cellular connections. As the transferred oligomers accumulate, acceptor cells gradually show beading of tubulin, a sign of neurite damage, and gradual endosomal leakage, a sign of cytotoxicity. These observations support that intracellular Aβ oligomers play a role in neurodegeneration, and they explain the manner in which Aβ can drive disease progression, even if the extracellular plaque load is poorly correlated with the degree of cognitive decline. Understanding this phenomenon sheds light on the pathophysiological mechanism of AD progression. Additional elucidation will help uncover the detailed mechanisms responsible for the manner in which AD progresses via anatomical connections and will facilitate the development of new strategies for stopping the progression of this incapacitating disease.</description><identifier>ISSN: 1529-2401</identifier><identifier>ISSN: 0270-6474</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/JNEUROSCI.0615-12.2012</identifier><identifier>PMID: 22745479</identifier><language>eng</language><publisher>United States: Society for Neuroscience</publisher><subject>Amyloid beta-Peptides - metabolism ; Amyloid beta-Peptides - toxicity ; Animals ; Animals, Newborn ; Cell Communication - drug effects ; Cell Communication - physiology ; Cell Differentiation - drug effects ; Cells, Cultured ; Coculture Techniques ; Dendrites - metabolism ; Dose-Response Relationship, Drug ; Endocytosis - drug effects ; Endocytosis - physiology ; Exocytosis - drug effects ; Exocytosis - physiology ; Female ; Green Fluorescent Proteins - genetics ; Green Fluorescent Proteins - metabolism ; Heterocyclic Compounds, 3-Ring - administration & dosage ; Heterocyclic Compounds, 3-Ring - metabolism ; Hippocampus - cytology ; Humans ; Lysosomal-Associated Membrane Protein 2 - metabolism ; Male ; MEDICIN ; MEDICINE ; Membrane Glycoproteins - metabolism ; Microinjections ; Microscopy, Electron, Transmission ; Neocortex - cytology ; Nerve Degeneration - chemically induced ; Nerve Degeneration - pathology ; Nerve Tissue Proteins - metabolism ; Neuroblastoma - pathology ; Neuroglia - drug effects ; Neuroglia - metabolism ; Neurons - drug effects ; Neurons - metabolism ; Neurons - ultrastructure ; Patch-Clamp Techniques ; Peptide Fragments - metabolism ; Peptide Fragments - toxicity ; rab5 GTP-Binding Proteins - metabolism ; Rats ; Rats, Sprague-Dawley ; Synaptic Transmission - drug effects ; Synaptic Transmission - physiology ; Tetrazolium Salts ; Thiazoles ; Time Factors ; Transfection</subject><ispartof>The Journal of neuroscience, 2012-06, Vol.32 (26), p.8767-8777</ispartof><rights>Copyright © 2012 the authors 0270-6474/12/328767-11$15.00/0 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6622335/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6622335/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22745479$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-79695$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Nath, Sangeeta</creatorcontrib><creatorcontrib>Agholme, Lotta</creatorcontrib><creatorcontrib>Kurudenkandy, Firoz Roshan</creatorcontrib><creatorcontrib>Granseth, Björn</creatorcontrib><creatorcontrib>Marcusson, Jan</creatorcontrib><creatorcontrib>Hallbeck, Martin</creatorcontrib><title>Spreading of neurodegenerative pathology via neuron-to-neuron transmission of β-amyloid</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>Alzheimer's disease (AD) is the major cause of dementia. During the development of AD, neurofibrillary tangles progress in a fixed pattern, starting in the transentorhinal cortex followed by the hippocampus and cortical areas. In contrast, the deposition of β-amyloid (Aβ) plaques, which are the other histological hallmark of AD, does not follow the same strict spatiotemporal pattern, and it correlates poorly with cognitive decline. Instead, soluble Aβ oligomers have received increasing attention as probable inducers of pathogenesis. In this study, we use microinjections into electrophysiologically defined primary hippocampal rat neurons to demonstrate the direct neuron-to-neuron transfer of soluble oligomeric Aβ. Additional studies conducted in a human donor-acceptor cell model show that this Aβ transfer depends on direct cellular connections. As the transferred oligomers accumulate, acceptor cells gradually show beading of tubulin, a sign of neurite damage, and gradual endosomal leakage, a sign of cytotoxicity. These observations support that intracellular Aβ oligomers play a role in neurodegeneration, and they explain the manner in which Aβ can drive disease progression, even if the extracellular plaque load is poorly correlated with the degree of cognitive decline. Understanding this phenomenon sheds light on the pathophysiological mechanism of AD progression. Additional elucidation will help uncover the detailed mechanisms responsible for the manner in which AD progresses via anatomical connections and will facilitate the development of new strategies for stopping the progression of this incapacitating disease.</description><subject>Amyloid beta-Peptides - metabolism</subject><subject>Amyloid beta-Peptides - toxicity</subject><subject>Animals</subject><subject>Animals, Newborn</subject><subject>Cell Communication - drug effects</subject><subject>Cell Communication - physiology</subject><subject>Cell Differentiation - drug effects</subject><subject>Cells, Cultured</subject><subject>Coculture Techniques</subject><subject>Dendrites - metabolism</subject><subject>Dose-Response Relationship, Drug</subject><subject>Endocytosis - drug effects</subject><subject>Endocytosis - physiology</subject><subject>Exocytosis - drug effects</subject><subject>Exocytosis - physiology</subject><subject>Female</subject><subject>Green Fluorescent Proteins - genetics</subject><subject>Green Fluorescent Proteins - metabolism</subject><subject>Heterocyclic Compounds, 3-Ring - administration & dosage</subject><subject>Heterocyclic Compounds, 3-Ring - metabolism</subject><subject>Hippocampus - cytology</subject><subject>Humans</subject><subject>Lysosomal-Associated Membrane Protein 2 - metabolism</subject><subject>Male</subject><subject>MEDICIN</subject><subject>MEDICINE</subject><subject>Membrane Glycoproteins - metabolism</subject><subject>Microinjections</subject><subject>Microscopy, Electron, Transmission</subject><subject>Neocortex - cytology</subject><subject>Nerve Degeneration - chemically induced</subject><subject>Nerve Degeneration - pathology</subject><subject>Nerve Tissue Proteins - metabolism</subject><subject>Neuroblastoma - pathology</subject><subject>Neuroglia - drug effects</subject><subject>Neuroglia - metabolism</subject><subject>Neurons - drug effects</subject><subject>Neurons - metabolism</subject><subject>Neurons - ultrastructure</subject><subject>Patch-Clamp Techniques</subject><subject>Peptide Fragments - metabolism</subject><subject>Peptide Fragments - toxicity</subject><subject>rab5 GTP-Binding Proteins - metabolism</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Synaptic Transmission - drug effects</subject><subject>Synaptic Transmission - physiology</subject><subject>Tetrazolium Salts</subject><subject>Thiazoles</subject><subject>Time Factors</subject><subject>Transfection</subject><issn>1529-2401</issn><issn>0270-6474</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNpVkMtOwzAQRS0E4lH4hSpLFqT4EcfJBgmV8hKiEqWIneUk42CUxiFOivpbfAjfhFELgtXM6N45VzMIDQkeEU7Z6e39ZP4wnY1vRjgmPCR0RDGhW2jfq2lII0y2__R76MC5V4yxwETsoj1KRcQjke6j51nTgipMXQZWBzX0rS2ghBpa1ZklBI3qXmxly1WwNGqt12Fnw3UXdK2q3cI4Z_zgAZ8foVqsKmuKQ7SjVeXgaFMHaH45eRxfh3fTq5vx-V3YMBF1IUk5zUDwvGBRJpIs1YwVCVMcCpxhqjWwRCeZSOM8V0ooILHmVFMtcBJlNGYDdLLmundo-kw2rVmodiWtMvLCPJ1L25ayMr30iJR7-9na7r0LKHKo_QnVv63_Sm1eZGmXMo4pZewbcLwBtPatB9dJf34OVaVqsL2ThHMSkziJsLcO_2b9hvx8n30BIdONLg</recordid><startdate>20120627</startdate><enddate>20120627</enddate><creator>Nath, Sangeeta</creator><creator>Agholme, Lotta</creator><creator>Kurudenkandy, Firoz Roshan</creator><creator>Granseth, Björn</creator><creator>Marcusson, Jan</creator><creator>Hallbeck, Martin</creator><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7TK</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>DG8</scope></search><sort><creationdate>20120627</creationdate><title>Spreading of neurodegenerative pathology via neuron-to-neuron transmission of β-amyloid</title><author>Nath, Sangeeta ; Agholme, Lotta ; Kurudenkandy, Firoz Roshan ; Granseth, Björn ; Marcusson, Jan ; Hallbeck, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p374t-1952be75cd34b78b9f33d83a5ed0b02ffe38f8b796ccaa7ae16f52f2f7084b263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Amyloid beta-Peptides - metabolism</topic><topic>Amyloid beta-Peptides - toxicity</topic><topic>Animals</topic><topic>Animals, Newborn</topic><topic>Cell Communication - drug effects</topic><topic>Cell Communication - physiology</topic><topic>Cell Differentiation - drug effects</topic><topic>Cells, Cultured</topic><topic>Coculture Techniques</topic><topic>Dendrites - metabolism</topic><topic>Dose-Response Relationship, Drug</topic><topic>Endocytosis - drug effects</topic><topic>Endocytosis - physiology</topic><topic>Exocytosis - drug effects</topic><topic>Exocytosis - physiology</topic><topic>Female</topic><topic>Green Fluorescent Proteins - genetics</topic><topic>Green Fluorescent Proteins - metabolism</topic><topic>Heterocyclic Compounds, 3-Ring - administration & dosage</topic><topic>Heterocyclic Compounds, 3-Ring - metabolism</topic><topic>Hippocampus - cytology</topic><topic>Humans</topic><topic>Lysosomal-Associated Membrane Protein 2 - metabolism</topic><topic>Male</topic><topic>MEDICIN</topic><topic>MEDICINE</topic><topic>Membrane Glycoproteins - metabolism</topic><topic>Microinjections</topic><topic>Microscopy, Electron, Transmission</topic><topic>Neocortex - cytology</topic><topic>Nerve Degeneration - chemically induced</topic><topic>Nerve Degeneration - pathology</topic><topic>Nerve Tissue Proteins - metabolism</topic><topic>Neuroblastoma - pathology</topic><topic>Neuroglia - drug effects</topic><topic>Neuroglia - metabolism</topic><topic>Neurons - drug effects</topic><topic>Neurons - metabolism</topic><topic>Neurons - ultrastructure</topic><topic>Patch-Clamp Techniques</topic><topic>Peptide Fragments - metabolism</topic><topic>Peptide Fragments - toxicity</topic><topic>rab5 GTP-Binding Proteins - metabolism</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Synaptic Transmission - drug effects</topic><topic>Synaptic Transmission - physiology</topic><topic>Tetrazolium Salts</topic><topic>Thiazoles</topic><topic>Time Factors</topic><topic>Transfection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nath, Sangeeta</creatorcontrib><creatorcontrib>Agholme, Lotta</creatorcontrib><creatorcontrib>Kurudenkandy, Firoz Roshan</creatorcontrib><creatorcontrib>Granseth, Björn</creatorcontrib><creatorcontrib>Marcusson, Jan</creatorcontrib><creatorcontrib>Hallbeck, Martin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Neurosciences Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Linköpings universitet</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nath, Sangeeta</au><au>Agholme, Lotta</au><au>Kurudenkandy, Firoz Roshan</au><au>Granseth, Björn</au><au>Marcusson, Jan</au><au>Hallbeck, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spreading of neurodegenerative pathology via neuron-to-neuron transmission of β-amyloid</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>2012-06-27</date><risdate>2012</risdate><volume>32</volume><issue>26</issue><spage>8767</spage><epage>8777</epage><pages>8767-8777</pages><issn>1529-2401</issn><issn>0270-6474</issn><eissn>1529-2401</eissn><abstract>Alzheimer's disease (AD) is the major cause of dementia. During the development of AD, neurofibrillary tangles progress in a fixed pattern, starting in the transentorhinal cortex followed by the hippocampus and cortical areas. In contrast, the deposition of β-amyloid (Aβ) plaques, which are the other histological hallmark of AD, does not follow the same strict spatiotemporal pattern, and it correlates poorly with cognitive decline. Instead, soluble Aβ oligomers have received increasing attention as probable inducers of pathogenesis. In this study, we use microinjections into electrophysiologically defined primary hippocampal rat neurons to demonstrate the direct neuron-to-neuron transfer of soluble oligomeric Aβ. Additional studies conducted in a human donor-acceptor cell model show that this Aβ transfer depends on direct cellular connections. As the transferred oligomers accumulate, acceptor cells gradually show beading of tubulin, a sign of neurite damage, and gradual endosomal leakage, a sign of cytotoxicity. These observations support that intracellular Aβ oligomers play a role in neurodegeneration, and they explain the manner in which Aβ can drive disease progression, even if the extracellular plaque load is poorly correlated with the degree of cognitive decline. Understanding this phenomenon sheds light on the pathophysiological mechanism of AD progression. Additional elucidation will help uncover the detailed mechanisms responsible for the manner in which AD progresses via anatomical connections and will facilitate the development of new strategies for stopping the progression of this incapacitating disease.</abstract><cop>United States</cop><pub>Society for Neuroscience</pub><pmid>22745479</pmid><doi>10.1523/JNEUROSCI.0615-12.2012</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1529-2401 |
ispartof | The Journal of neuroscience, 2012-06, Vol.32 (26), p.8767-8777 |
issn | 1529-2401 0270-6474 1529-2401 |
language | eng |
recordid | cdi_swepub_primary_oai_DiVA_org_liu_79695 |
source | Open Access: PubMed Central |
subjects | Amyloid beta-Peptides - metabolism Amyloid beta-Peptides - toxicity Animals Animals, Newborn Cell Communication - drug effects Cell Communication - physiology Cell Differentiation - drug effects Cells, Cultured Coculture Techniques Dendrites - metabolism Dose-Response Relationship, Drug Endocytosis - drug effects Endocytosis - physiology Exocytosis - drug effects Exocytosis - physiology Female Green Fluorescent Proteins - genetics Green Fluorescent Proteins - metabolism Heterocyclic Compounds, 3-Ring - administration & dosage Heterocyclic Compounds, 3-Ring - metabolism Hippocampus - cytology Humans Lysosomal-Associated Membrane Protein 2 - metabolism Male MEDICIN MEDICINE Membrane Glycoproteins - metabolism Microinjections Microscopy, Electron, Transmission Neocortex - cytology Nerve Degeneration - chemically induced Nerve Degeneration - pathology Nerve Tissue Proteins - metabolism Neuroblastoma - pathology Neuroglia - drug effects Neuroglia - metabolism Neurons - drug effects Neurons - metabolism Neurons - ultrastructure Patch-Clamp Techniques Peptide Fragments - metabolism Peptide Fragments - toxicity rab5 GTP-Binding Proteins - metabolism Rats Rats, Sprague-Dawley Synaptic Transmission - drug effects Synaptic Transmission - physiology Tetrazolium Salts Thiazoles Time Factors Transfection |
title | Spreading of neurodegenerative pathology via neuron-to-neuron transmission of β-amyloid |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T22%3A55%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spreading%20of%20neurodegenerative%20pathology%20via%20neuron-to-neuron%20transmission%20of%20%CE%B2-amyloid&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Nath,%20Sangeeta&rft.date=2012-06-27&rft.volume=32&rft.issue=26&rft.spage=8767&rft.epage=8777&rft.pages=8767-8777&rft.issn=1529-2401&rft.eissn=1529-2401&rft_id=info:doi/10.1523/JNEUROSCI.0615-12.2012&rft_dat=%3Cproquest_swepu%3E1551616840%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p374t-1952be75cd34b78b9f33d83a5ed0b02ffe38f8b796ccaa7ae16f52f2f7084b263%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1551616840&rft_id=info:pmid/22745479&rfr_iscdi=true |