Loading…

Spreading of neurodegenerative pathology via neuron-to-neuron transmission of β-amyloid

Alzheimer's disease (AD) is the major cause of dementia. During the development of AD, neurofibrillary tangles progress in a fixed pattern, starting in the transentorhinal cortex followed by the hippocampus and cortical areas. In contrast, the deposition of β-amyloid (Aβ) plaques, which are the...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of neuroscience 2012-06, Vol.32 (26), p.8767-8777
Main Authors: Nath, Sangeeta, Agholme, Lotta, Kurudenkandy, Firoz Roshan, Granseth, Björn, Marcusson, Jan, Hallbeck, Martin
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 8777
container_issue 26
container_start_page 8767
container_title The Journal of neuroscience
container_volume 32
creator Nath, Sangeeta
Agholme, Lotta
Kurudenkandy, Firoz Roshan
Granseth, Björn
Marcusson, Jan
Hallbeck, Martin
description Alzheimer's disease (AD) is the major cause of dementia. During the development of AD, neurofibrillary tangles progress in a fixed pattern, starting in the transentorhinal cortex followed by the hippocampus and cortical areas. In contrast, the deposition of β-amyloid (Aβ) plaques, which are the other histological hallmark of AD, does not follow the same strict spatiotemporal pattern, and it correlates poorly with cognitive decline. Instead, soluble Aβ oligomers have received increasing attention as probable inducers of pathogenesis. In this study, we use microinjections into electrophysiologically defined primary hippocampal rat neurons to demonstrate the direct neuron-to-neuron transfer of soluble oligomeric Aβ. Additional studies conducted in a human donor-acceptor cell model show that this Aβ transfer depends on direct cellular connections. As the transferred oligomers accumulate, acceptor cells gradually show beading of tubulin, a sign of neurite damage, and gradual endosomal leakage, a sign of cytotoxicity. These observations support that intracellular Aβ oligomers play a role in neurodegeneration, and they explain the manner in which Aβ can drive disease progression, even if the extracellular plaque load is poorly correlated with the degree of cognitive decline. Understanding this phenomenon sheds light on the pathophysiological mechanism of AD progression. Additional elucidation will help uncover the detailed mechanisms responsible for the manner in which AD progresses via anatomical connections and will facilitate the development of new strategies for stopping the progression of this incapacitating disease.
doi_str_mv 10.1523/JNEUROSCI.0615-12.2012
format article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_liu_79695</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1551616840</sourcerecordid><originalsourceid>FETCH-LOGICAL-p374t-1952be75cd34b78b9f33d83a5ed0b02ffe38f8b796ccaa7ae16f52f2f7084b263</originalsourceid><addsrcrecordid>eNpVkMtOwzAQRS0E4lH4hSpLFqT4EcfJBgmV8hKiEqWIneUk42CUxiFOivpbfAjfhFELgtXM6N45VzMIDQkeEU7Z6e39ZP4wnY1vRjgmPCR0RDGhW2jfq2lII0y2__R76MC5V4yxwETsoj1KRcQjke6j51nTgipMXQZWBzX0rS2ghBpa1ZklBI3qXmxly1WwNGqt12Fnw3UXdK2q3cI4Z_zgAZ8foVqsKmuKQ7SjVeXgaFMHaH45eRxfh3fTq5vx-V3YMBF1IUk5zUDwvGBRJpIs1YwVCVMcCpxhqjWwRCeZSOM8V0ooILHmVFMtcBJlNGYDdLLmundo-kw2rVmodiWtMvLCPJ1L25ayMr30iJR7-9na7r0LKHKo_QnVv63_Sm1eZGmXMo4pZewbcLwBtPatB9dJf34OVaVqsL2ThHMSkziJsLcO_2b9hvx8n30BIdONLg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1551616840</pqid></control><display><type>article</type><title>Spreading of neurodegenerative pathology via neuron-to-neuron transmission of β-amyloid</title><source>Open Access: PubMed Central</source><creator>Nath, Sangeeta ; Agholme, Lotta ; Kurudenkandy, Firoz Roshan ; Granseth, Björn ; Marcusson, Jan ; Hallbeck, Martin</creator><creatorcontrib>Nath, Sangeeta ; Agholme, Lotta ; Kurudenkandy, Firoz Roshan ; Granseth, Björn ; Marcusson, Jan ; Hallbeck, Martin</creatorcontrib><description>Alzheimer's disease (AD) is the major cause of dementia. During the development of AD, neurofibrillary tangles progress in a fixed pattern, starting in the transentorhinal cortex followed by the hippocampus and cortical areas. In contrast, the deposition of β-amyloid (Aβ) plaques, which are the other histological hallmark of AD, does not follow the same strict spatiotemporal pattern, and it correlates poorly with cognitive decline. Instead, soluble Aβ oligomers have received increasing attention as probable inducers of pathogenesis. In this study, we use microinjections into electrophysiologically defined primary hippocampal rat neurons to demonstrate the direct neuron-to-neuron transfer of soluble oligomeric Aβ. Additional studies conducted in a human donor-acceptor cell model show that this Aβ transfer depends on direct cellular connections. As the transferred oligomers accumulate, acceptor cells gradually show beading of tubulin, a sign of neurite damage, and gradual endosomal leakage, a sign of cytotoxicity. These observations support that intracellular Aβ oligomers play a role in neurodegeneration, and they explain the manner in which Aβ can drive disease progression, even if the extracellular plaque load is poorly correlated with the degree of cognitive decline. Understanding this phenomenon sheds light on the pathophysiological mechanism of AD progression. Additional elucidation will help uncover the detailed mechanisms responsible for the manner in which AD progresses via anatomical connections and will facilitate the development of new strategies for stopping the progression of this incapacitating disease.</description><identifier>ISSN: 1529-2401</identifier><identifier>ISSN: 0270-6474</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/JNEUROSCI.0615-12.2012</identifier><identifier>PMID: 22745479</identifier><language>eng</language><publisher>United States: Society for Neuroscience</publisher><subject>Amyloid beta-Peptides - metabolism ; Amyloid beta-Peptides - toxicity ; Animals ; Animals, Newborn ; Cell Communication - drug effects ; Cell Communication - physiology ; Cell Differentiation - drug effects ; Cells, Cultured ; Coculture Techniques ; Dendrites - metabolism ; Dose-Response Relationship, Drug ; Endocytosis - drug effects ; Endocytosis - physiology ; Exocytosis - drug effects ; Exocytosis - physiology ; Female ; Green Fluorescent Proteins - genetics ; Green Fluorescent Proteins - metabolism ; Heterocyclic Compounds, 3-Ring - administration &amp; dosage ; Heterocyclic Compounds, 3-Ring - metabolism ; Hippocampus - cytology ; Humans ; Lysosomal-Associated Membrane Protein 2 - metabolism ; Male ; MEDICIN ; MEDICINE ; Membrane Glycoproteins - metabolism ; Microinjections ; Microscopy, Electron, Transmission ; Neocortex - cytology ; Nerve Degeneration - chemically induced ; Nerve Degeneration - pathology ; Nerve Tissue Proteins - metabolism ; Neuroblastoma - pathology ; Neuroglia - drug effects ; Neuroglia - metabolism ; Neurons - drug effects ; Neurons - metabolism ; Neurons - ultrastructure ; Patch-Clamp Techniques ; Peptide Fragments - metabolism ; Peptide Fragments - toxicity ; rab5 GTP-Binding Proteins - metabolism ; Rats ; Rats, Sprague-Dawley ; Synaptic Transmission - drug effects ; Synaptic Transmission - physiology ; Tetrazolium Salts ; Thiazoles ; Time Factors ; Transfection</subject><ispartof>The Journal of neuroscience, 2012-06, Vol.32 (26), p.8767-8777</ispartof><rights>Copyright © 2012 the authors 0270-6474/12/328767-11$15.00/0 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6622335/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6622335/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22745479$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-79695$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Nath, Sangeeta</creatorcontrib><creatorcontrib>Agholme, Lotta</creatorcontrib><creatorcontrib>Kurudenkandy, Firoz Roshan</creatorcontrib><creatorcontrib>Granseth, Björn</creatorcontrib><creatorcontrib>Marcusson, Jan</creatorcontrib><creatorcontrib>Hallbeck, Martin</creatorcontrib><title>Spreading of neurodegenerative pathology via neuron-to-neuron transmission of β-amyloid</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>Alzheimer's disease (AD) is the major cause of dementia. During the development of AD, neurofibrillary tangles progress in a fixed pattern, starting in the transentorhinal cortex followed by the hippocampus and cortical areas. In contrast, the deposition of β-amyloid (Aβ) plaques, which are the other histological hallmark of AD, does not follow the same strict spatiotemporal pattern, and it correlates poorly with cognitive decline. Instead, soluble Aβ oligomers have received increasing attention as probable inducers of pathogenesis. In this study, we use microinjections into electrophysiologically defined primary hippocampal rat neurons to demonstrate the direct neuron-to-neuron transfer of soluble oligomeric Aβ. Additional studies conducted in a human donor-acceptor cell model show that this Aβ transfer depends on direct cellular connections. As the transferred oligomers accumulate, acceptor cells gradually show beading of tubulin, a sign of neurite damage, and gradual endosomal leakage, a sign of cytotoxicity. These observations support that intracellular Aβ oligomers play a role in neurodegeneration, and they explain the manner in which Aβ can drive disease progression, even if the extracellular plaque load is poorly correlated with the degree of cognitive decline. Understanding this phenomenon sheds light on the pathophysiological mechanism of AD progression. Additional elucidation will help uncover the detailed mechanisms responsible for the manner in which AD progresses via anatomical connections and will facilitate the development of new strategies for stopping the progression of this incapacitating disease.</description><subject>Amyloid beta-Peptides - metabolism</subject><subject>Amyloid beta-Peptides - toxicity</subject><subject>Animals</subject><subject>Animals, Newborn</subject><subject>Cell Communication - drug effects</subject><subject>Cell Communication - physiology</subject><subject>Cell Differentiation - drug effects</subject><subject>Cells, Cultured</subject><subject>Coculture Techniques</subject><subject>Dendrites - metabolism</subject><subject>Dose-Response Relationship, Drug</subject><subject>Endocytosis - drug effects</subject><subject>Endocytosis - physiology</subject><subject>Exocytosis - drug effects</subject><subject>Exocytosis - physiology</subject><subject>Female</subject><subject>Green Fluorescent Proteins - genetics</subject><subject>Green Fluorescent Proteins - metabolism</subject><subject>Heterocyclic Compounds, 3-Ring - administration &amp; dosage</subject><subject>Heterocyclic Compounds, 3-Ring - metabolism</subject><subject>Hippocampus - cytology</subject><subject>Humans</subject><subject>Lysosomal-Associated Membrane Protein 2 - metabolism</subject><subject>Male</subject><subject>MEDICIN</subject><subject>MEDICINE</subject><subject>Membrane Glycoproteins - metabolism</subject><subject>Microinjections</subject><subject>Microscopy, Electron, Transmission</subject><subject>Neocortex - cytology</subject><subject>Nerve Degeneration - chemically induced</subject><subject>Nerve Degeneration - pathology</subject><subject>Nerve Tissue Proteins - metabolism</subject><subject>Neuroblastoma - pathology</subject><subject>Neuroglia - drug effects</subject><subject>Neuroglia - metabolism</subject><subject>Neurons - drug effects</subject><subject>Neurons - metabolism</subject><subject>Neurons - ultrastructure</subject><subject>Patch-Clamp Techniques</subject><subject>Peptide Fragments - metabolism</subject><subject>Peptide Fragments - toxicity</subject><subject>rab5 GTP-Binding Proteins - metabolism</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Synaptic Transmission - drug effects</subject><subject>Synaptic Transmission - physiology</subject><subject>Tetrazolium Salts</subject><subject>Thiazoles</subject><subject>Time Factors</subject><subject>Transfection</subject><issn>1529-2401</issn><issn>0270-6474</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNpVkMtOwzAQRS0E4lH4hSpLFqT4EcfJBgmV8hKiEqWIneUk42CUxiFOivpbfAjfhFELgtXM6N45VzMIDQkeEU7Z6e39ZP4wnY1vRjgmPCR0RDGhW2jfq2lII0y2__R76MC5V4yxwETsoj1KRcQjke6j51nTgipMXQZWBzX0rS2ghBpa1ZklBI3qXmxly1WwNGqt12Fnw3UXdK2q3cI4Z_zgAZ8foVqsKmuKQ7SjVeXgaFMHaH45eRxfh3fTq5vx-V3YMBF1IUk5zUDwvGBRJpIs1YwVCVMcCpxhqjWwRCeZSOM8V0ooILHmVFMtcBJlNGYDdLLmundo-kw2rVmodiWtMvLCPJ1L25ayMr30iJR7-9na7r0LKHKo_QnVv63_Sm1eZGmXMo4pZewbcLwBtPatB9dJf34OVaVqsL2ThHMSkziJsLcO_2b9hvx8n30BIdONLg</recordid><startdate>20120627</startdate><enddate>20120627</enddate><creator>Nath, Sangeeta</creator><creator>Agholme, Lotta</creator><creator>Kurudenkandy, Firoz Roshan</creator><creator>Granseth, Björn</creator><creator>Marcusson, Jan</creator><creator>Hallbeck, Martin</creator><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7TK</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>DG8</scope></search><sort><creationdate>20120627</creationdate><title>Spreading of neurodegenerative pathology via neuron-to-neuron transmission of β-amyloid</title><author>Nath, Sangeeta ; Agholme, Lotta ; Kurudenkandy, Firoz Roshan ; Granseth, Björn ; Marcusson, Jan ; Hallbeck, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p374t-1952be75cd34b78b9f33d83a5ed0b02ffe38f8b796ccaa7ae16f52f2f7084b263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Amyloid beta-Peptides - metabolism</topic><topic>Amyloid beta-Peptides - toxicity</topic><topic>Animals</topic><topic>Animals, Newborn</topic><topic>Cell Communication - drug effects</topic><topic>Cell Communication - physiology</topic><topic>Cell Differentiation - drug effects</topic><topic>Cells, Cultured</topic><topic>Coculture Techniques</topic><topic>Dendrites - metabolism</topic><topic>Dose-Response Relationship, Drug</topic><topic>Endocytosis - drug effects</topic><topic>Endocytosis - physiology</topic><topic>Exocytosis - drug effects</topic><topic>Exocytosis - physiology</topic><topic>Female</topic><topic>Green Fluorescent Proteins - genetics</topic><topic>Green Fluorescent Proteins - metabolism</topic><topic>Heterocyclic Compounds, 3-Ring - administration &amp; dosage</topic><topic>Heterocyclic Compounds, 3-Ring - metabolism</topic><topic>Hippocampus - cytology</topic><topic>Humans</topic><topic>Lysosomal-Associated Membrane Protein 2 - metabolism</topic><topic>Male</topic><topic>MEDICIN</topic><topic>MEDICINE</topic><topic>Membrane Glycoproteins - metabolism</topic><topic>Microinjections</topic><topic>Microscopy, Electron, Transmission</topic><topic>Neocortex - cytology</topic><topic>Nerve Degeneration - chemically induced</topic><topic>Nerve Degeneration - pathology</topic><topic>Nerve Tissue Proteins - metabolism</topic><topic>Neuroblastoma - pathology</topic><topic>Neuroglia - drug effects</topic><topic>Neuroglia - metabolism</topic><topic>Neurons - drug effects</topic><topic>Neurons - metabolism</topic><topic>Neurons - ultrastructure</topic><topic>Patch-Clamp Techniques</topic><topic>Peptide Fragments - metabolism</topic><topic>Peptide Fragments - toxicity</topic><topic>rab5 GTP-Binding Proteins - metabolism</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Synaptic Transmission - drug effects</topic><topic>Synaptic Transmission - physiology</topic><topic>Tetrazolium Salts</topic><topic>Thiazoles</topic><topic>Time Factors</topic><topic>Transfection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nath, Sangeeta</creatorcontrib><creatorcontrib>Agholme, Lotta</creatorcontrib><creatorcontrib>Kurudenkandy, Firoz Roshan</creatorcontrib><creatorcontrib>Granseth, Björn</creatorcontrib><creatorcontrib>Marcusson, Jan</creatorcontrib><creatorcontrib>Hallbeck, Martin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Neurosciences Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Linköpings universitet</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nath, Sangeeta</au><au>Agholme, Lotta</au><au>Kurudenkandy, Firoz Roshan</au><au>Granseth, Björn</au><au>Marcusson, Jan</au><au>Hallbeck, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spreading of neurodegenerative pathology via neuron-to-neuron transmission of β-amyloid</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>2012-06-27</date><risdate>2012</risdate><volume>32</volume><issue>26</issue><spage>8767</spage><epage>8777</epage><pages>8767-8777</pages><issn>1529-2401</issn><issn>0270-6474</issn><eissn>1529-2401</eissn><abstract>Alzheimer's disease (AD) is the major cause of dementia. During the development of AD, neurofibrillary tangles progress in a fixed pattern, starting in the transentorhinal cortex followed by the hippocampus and cortical areas. In contrast, the deposition of β-amyloid (Aβ) plaques, which are the other histological hallmark of AD, does not follow the same strict spatiotemporal pattern, and it correlates poorly with cognitive decline. Instead, soluble Aβ oligomers have received increasing attention as probable inducers of pathogenesis. In this study, we use microinjections into electrophysiologically defined primary hippocampal rat neurons to demonstrate the direct neuron-to-neuron transfer of soluble oligomeric Aβ. Additional studies conducted in a human donor-acceptor cell model show that this Aβ transfer depends on direct cellular connections. As the transferred oligomers accumulate, acceptor cells gradually show beading of tubulin, a sign of neurite damage, and gradual endosomal leakage, a sign of cytotoxicity. These observations support that intracellular Aβ oligomers play a role in neurodegeneration, and they explain the manner in which Aβ can drive disease progression, even if the extracellular plaque load is poorly correlated with the degree of cognitive decline. Understanding this phenomenon sheds light on the pathophysiological mechanism of AD progression. Additional elucidation will help uncover the detailed mechanisms responsible for the manner in which AD progresses via anatomical connections and will facilitate the development of new strategies for stopping the progression of this incapacitating disease.</abstract><cop>United States</cop><pub>Society for Neuroscience</pub><pmid>22745479</pmid><doi>10.1523/JNEUROSCI.0615-12.2012</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1529-2401
ispartof The Journal of neuroscience, 2012-06, Vol.32 (26), p.8767-8777
issn 1529-2401
0270-6474
1529-2401
language eng
recordid cdi_swepub_primary_oai_DiVA_org_liu_79695
source Open Access: PubMed Central
subjects Amyloid beta-Peptides - metabolism
Amyloid beta-Peptides - toxicity
Animals
Animals, Newborn
Cell Communication - drug effects
Cell Communication - physiology
Cell Differentiation - drug effects
Cells, Cultured
Coculture Techniques
Dendrites - metabolism
Dose-Response Relationship, Drug
Endocytosis - drug effects
Endocytosis - physiology
Exocytosis - drug effects
Exocytosis - physiology
Female
Green Fluorescent Proteins - genetics
Green Fluorescent Proteins - metabolism
Heterocyclic Compounds, 3-Ring - administration & dosage
Heterocyclic Compounds, 3-Ring - metabolism
Hippocampus - cytology
Humans
Lysosomal-Associated Membrane Protein 2 - metabolism
Male
MEDICIN
MEDICINE
Membrane Glycoproteins - metabolism
Microinjections
Microscopy, Electron, Transmission
Neocortex - cytology
Nerve Degeneration - chemically induced
Nerve Degeneration - pathology
Nerve Tissue Proteins - metabolism
Neuroblastoma - pathology
Neuroglia - drug effects
Neuroglia - metabolism
Neurons - drug effects
Neurons - metabolism
Neurons - ultrastructure
Patch-Clamp Techniques
Peptide Fragments - metabolism
Peptide Fragments - toxicity
rab5 GTP-Binding Proteins - metabolism
Rats
Rats, Sprague-Dawley
Synaptic Transmission - drug effects
Synaptic Transmission - physiology
Tetrazolium Salts
Thiazoles
Time Factors
Transfection
title Spreading of neurodegenerative pathology via neuron-to-neuron transmission of β-amyloid
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T22%3A55%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spreading%20of%20neurodegenerative%20pathology%20via%20neuron-to-neuron%20transmission%20of%20%CE%B2-amyloid&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Nath,%20Sangeeta&rft.date=2012-06-27&rft.volume=32&rft.issue=26&rft.spage=8767&rft.epage=8777&rft.pages=8767-8777&rft.issn=1529-2401&rft.eissn=1529-2401&rft_id=info:doi/10.1523/JNEUROSCI.0615-12.2012&rft_dat=%3Cproquest_swepu%3E1551616840%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p374t-1952be75cd34b78b9f33d83a5ed0b02ffe38f8b796ccaa7ae16f52f2f7084b263%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1551616840&rft_id=info:pmid/22745479&rfr_iscdi=true