Loading…

Color attributes for object detection

State-of-the-art object detectors typically use shape information as a low level feature representation to capture the local structure of an object. This paper shows that early fusion of shape and color, as is popular in image classification, leads to a significant drop in performance for object det...

Full description

Saved in:
Bibliographic Details
Main Authors: Shahbaz Khan, Fahad, Anwer, Rao Muhammad, van de Weijer, J., Bagdanov, A. D., Vanrell, M., Lopez, A. M.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 3313
container_issue
container_start_page 3306
container_title
container_volume
creator Shahbaz Khan, Fahad
Anwer, Rao Muhammad
van de Weijer, J.
Bagdanov, A. D.
Vanrell, M.
Lopez, A. M.
description State-of-the-art object detectors typically use shape information as a low level feature representation to capture the local structure of an object. This paper shows that early fusion of shape and color, as is popular in image classification, leads to a significant drop in performance for object detection. Moreover, such approaches also yields suboptimal results for object categories with varying importance of color and shape. In this paper we propose the use of color attributes as an explicit color representation for object detection. Color attributes are compact, computationally efficient, and when combined with traditional shape features provide state-of-the-art results for object detection. Our method is tested on the PASCAL VOC 2007 and 2009 datasets and results clearly show that our method improves over state-of-the-art techniques despite its simplicity. We also introduce a new dataset consisting of cartoon character images in which color plays a pivotal role. On this dataset, our approach yields a significant gain of 14% in mean AP over conventional state-of-the-art methods.
doi_str_mv 10.1109/CVPR.2012.6248068
format conference_proceeding
fullrecord <record><control><sourceid>swepub_6IE</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_liu_87580</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6248068</ieee_id><sourcerecordid>oai_DiVA_org_liu_87580</sourcerecordid><originalsourceid>FETCH-LOGICAL-i212t-1750b17c5e79703e230f8146fc5d2d20a47938eb2ab0c3ded3d83c93f6809d583</originalsourceid><addsrcrecordid>eNo9kE1LxDAYhCMquK79AeKlF2-2vnnT5uO41E9YUET3GpImlSzVLG0W8d9b2dW5DAMPwzCEnFMoKQV13ayeX0oEiiXHSgKXB-SUVlwwiijxkGRKyL_MqyMyo8BZwRVVJyQbxzVMmghQOCOXTezjkJuUhmC3yY95N8Vo175NufNpshA_z8hxZ_rRZ3ufk7e729fmoVg-3T82i2URkGIqqKjBUtHWXigBzCOD7ndJ19YOHYKphGLSWzQWWua8Y06yVrGOS1CulmxOrna945ffbK3eDOHDDN86mqBvwmqh4_Cu-7DVUtQSJvxihwfv_T-8P4X9ALhAUek</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Color attributes for object detection</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Shahbaz Khan, Fahad ; Anwer, Rao Muhammad ; van de Weijer, J. ; Bagdanov, A. D. ; Vanrell, M. ; Lopez, A. M.</creator><creatorcontrib>Shahbaz Khan, Fahad ; Anwer, Rao Muhammad ; van de Weijer, J. ; Bagdanov, A. D. ; Vanrell, M. ; Lopez, A. M.</creatorcontrib><description>State-of-the-art object detectors typically use shape information as a low level feature representation to capture the local structure of an object. This paper shows that early fusion of shape and color, as is popular in image classification, leads to a significant drop in performance for object detection. Moreover, such approaches also yields suboptimal results for object categories with varying importance of color and shape. In this paper we propose the use of color attributes as an explicit color representation for object detection. Color attributes are compact, computationally efficient, and when combined with traditional shape features provide state-of-the-art results for object detection. Our method is tested on the PASCAL VOC 2007 and 2009 datasets and results clearly show that our method improves over state-of-the-art techniques despite its simplicity. We also introduce a new dataset consisting of cartoon character images in which color plays a pivotal role. On this dataset, our approach yields a significant gain of 14% in mean AP over conventional state-of-the-art methods.</description><identifier>ISSN: 1063-6919</identifier><identifier>ISBN: 9781467312264</identifier><identifier>ISBN: 1467312266</identifier><identifier>ISBN: 1467312274</identifier><identifier>ISBN: 9781467312271</identifier><identifier>EISBN: 1467312282</identifier><identifier>EISBN: 1467312274</identifier><identifier>EISBN: 9781467312271</identifier><identifier>EISBN: 9781467312288</identifier><identifier>DOI: 10.1109/CVPR.2012.6248068</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computational modeling ; Feature extraction ; Histograms ; Image color analysis ; Lighting ; Object detection ; Shape ; TECHNOLOGY ; TEKNIKVETENSKAP</subject><ispartof>2012 IEEE Conference on Computer Vision and Pattern Recognition, 2012, p.3306-3313</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6248068$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,309,310,777,781,786,787,882,2052,4036,4037,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6248068$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-87580$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Shahbaz Khan, Fahad</creatorcontrib><creatorcontrib>Anwer, Rao Muhammad</creatorcontrib><creatorcontrib>van de Weijer, J.</creatorcontrib><creatorcontrib>Bagdanov, A. D.</creatorcontrib><creatorcontrib>Vanrell, M.</creatorcontrib><creatorcontrib>Lopez, A. M.</creatorcontrib><title>Color attributes for object detection</title><title>2012 IEEE Conference on Computer Vision and Pattern Recognition</title><addtitle>CVPR</addtitle><description>State-of-the-art object detectors typically use shape information as a low level feature representation to capture the local structure of an object. This paper shows that early fusion of shape and color, as is popular in image classification, leads to a significant drop in performance for object detection. Moreover, such approaches also yields suboptimal results for object categories with varying importance of color and shape. In this paper we propose the use of color attributes as an explicit color representation for object detection. Color attributes are compact, computationally efficient, and when combined with traditional shape features provide state-of-the-art results for object detection. Our method is tested on the PASCAL VOC 2007 and 2009 datasets and results clearly show that our method improves over state-of-the-art techniques despite its simplicity. We also introduce a new dataset consisting of cartoon character images in which color plays a pivotal role. On this dataset, our approach yields a significant gain of 14% in mean AP over conventional state-of-the-art methods.</description><subject>Computational modeling</subject><subject>Feature extraction</subject><subject>Histograms</subject><subject>Image color analysis</subject><subject>Lighting</subject><subject>Object detection</subject><subject>Shape</subject><subject>TECHNOLOGY</subject><subject>TEKNIKVETENSKAP</subject><issn>1063-6919</issn><isbn>9781467312264</isbn><isbn>1467312266</isbn><isbn>1467312274</isbn><isbn>9781467312271</isbn><isbn>1467312282</isbn><isbn>1467312274</isbn><isbn>9781467312271</isbn><isbn>9781467312288</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo9kE1LxDAYhCMquK79AeKlF2-2vnnT5uO41E9YUET3GpImlSzVLG0W8d9b2dW5DAMPwzCEnFMoKQV13ayeX0oEiiXHSgKXB-SUVlwwiijxkGRKyL_MqyMyo8BZwRVVJyQbxzVMmghQOCOXTezjkJuUhmC3yY95N8Vo175NufNpshA_z8hxZ_rRZ3ufk7e729fmoVg-3T82i2URkGIqqKjBUtHWXigBzCOD7ndJ19YOHYKphGLSWzQWWua8Y06yVrGOS1CulmxOrna945ffbK3eDOHDDN86mqBvwmqh4_Cu-7DVUtQSJvxihwfv_T-8P4X9ALhAUek</recordid><startdate>201206</startdate><enddate>201206</enddate><creator>Shahbaz Khan, Fahad</creator><creator>Anwer, Rao Muhammad</creator><creator>van de Weijer, J.</creator><creator>Bagdanov, A. D.</creator><creator>Vanrell, M.</creator><creator>Lopez, A. M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>ADTPV</scope><scope>BNKNJ</scope><scope>DG8</scope></search><sort><creationdate>201206</creationdate><title>Color attributes for object detection</title><author>Shahbaz Khan, Fahad ; Anwer, Rao Muhammad ; van de Weijer, J. ; Bagdanov, A. D. ; Vanrell, M. ; Lopez, A. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i212t-1750b17c5e79703e230f8146fc5d2d20a47938eb2ab0c3ded3d83c93f6809d583</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Computational modeling</topic><topic>Feature extraction</topic><topic>Histograms</topic><topic>Image color analysis</topic><topic>Lighting</topic><topic>Object detection</topic><topic>Shape</topic><topic>TECHNOLOGY</topic><topic>TEKNIKVETENSKAP</topic><toplevel>online_resources</toplevel><creatorcontrib>Shahbaz Khan, Fahad</creatorcontrib><creatorcontrib>Anwer, Rao Muhammad</creatorcontrib><creatorcontrib>van de Weijer, J.</creatorcontrib><creatorcontrib>Bagdanov, A. D.</creatorcontrib><creatorcontrib>Vanrell, M.</creatorcontrib><creatorcontrib>Lopez, A. M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>SwePub</collection><collection>SwePub Conference</collection><collection>SWEPUB Linköpings universitet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shahbaz Khan, Fahad</au><au>Anwer, Rao Muhammad</au><au>van de Weijer, J.</au><au>Bagdanov, A. D.</au><au>Vanrell, M.</au><au>Lopez, A. M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Color attributes for object detection</atitle><btitle>2012 IEEE Conference on Computer Vision and Pattern Recognition</btitle><stitle>CVPR</stitle><date>2012-06</date><risdate>2012</risdate><spage>3306</spage><epage>3313</epage><pages>3306-3313</pages><issn>1063-6919</issn><isbn>9781467312264</isbn><isbn>1467312266</isbn><isbn>1467312274</isbn><isbn>9781467312271</isbn><eisbn>1467312282</eisbn><eisbn>1467312274</eisbn><eisbn>9781467312271</eisbn><eisbn>9781467312288</eisbn><abstract>State-of-the-art object detectors typically use shape information as a low level feature representation to capture the local structure of an object. This paper shows that early fusion of shape and color, as is popular in image classification, leads to a significant drop in performance for object detection. Moreover, such approaches also yields suboptimal results for object categories with varying importance of color and shape. In this paper we propose the use of color attributes as an explicit color representation for object detection. Color attributes are compact, computationally efficient, and when combined with traditional shape features provide state-of-the-art results for object detection. Our method is tested on the PASCAL VOC 2007 and 2009 datasets and results clearly show that our method improves over state-of-the-art techniques despite its simplicity. We also introduce a new dataset consisting of cartoon character images in which color plays a pivotal role. On this dataset, our approach yields a significant gain of 14% in mean AP over conventional state-of-the-art methods.</abstract><pub>IEEE</pub><doi>10.1109/CVPR.2012.6248068</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-6919
ispartof 2012 IEEE Conference on Computer Vision and Pattern Recognition, 2012, p.3306-3313
issn 1063-6919
language eng
recordid cdi_swepub_primary_oai_DiVA_org_liu_87580
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Computational modeling
Feature extraction
Histograms
Image color analysis
Lighting
Object detection
Shape
TECHNOLOGY
TEKNIKVETENSKAP
title Color attributes for object detection
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T20%3A45%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-swepub_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Color%20attributes%20for%20object%20detection&rft.btitle=2012%20IEEE%20Conference%20on%20Computer%20Vision%20and%20Pattern%20Recognition&rft.au=Shahbaz%20Khan,%20Fahad&rft.date=2012-06&rft.spage=3306&rft.epage=3313&rft.pages=3306-3313&rft.issn=1063-6919&rft.isbn=9781467312264&rft.isbn_list=1467312266&rft.isbn_list=1467312274&rft.isbn_list=9781467312271&rft_id=info:doi/10.1109/CVPR.2012.6248068&rft.eisbn=1467312282&rft.eisbn_list=1467312274&rft.eisbn_list=9781467312271&rft.eisbn_list=9781467312288&rft_dat=%3Cswepub_6IE%3Eoai_DiVA_org_liu_87580%3C/swepub_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i212t-1750b17c5e79703e230f8146fc5d2d20a47938eb2ab0c3ded3d83c93f6809d583%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6248068&rfr_iscdi=true