Loading…
Color attributes for object detection
State-of-the-art object detectors typically use shape information as a low level feature representation to capture the local structure of an object. This paper shows that early fusion of shape and color, as is popular in image classification, leads to a significant drop in performance for object det...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 3313 |
container_issue | |
container_start_page | 3306 |
container_title | |
container_volume | |
creator | Shahbaz Khan, Fahad Anwer, Rao Muhammad van de Weijer, J. Bagdanov, A. D. Vanrell, M. Lopez, A. M. |
description | State-of-the-art object detectors typically use shape information as a low level feature representation to capture the local structure of an object. This paper shows that early fusion of shape and color, as is popular in image classification, leads to a significant drop in performance for object detection. Moreover, such approaches also yields suboptimal results for object categories with varying importance of color and shape. In this paper we propose the use of color attributes as an explicit color representation for object detection. Color attributes are compact, computationally efficient, and when combined with traditional shape features provide state-of-the-art results for object detection. Our method is tested on the PASCAL VOC 2007 and 2009 datasets and results clearly show that our method improves over state-of-the-art techniques despite its simplicity. We also introduce a new dataset consisting of cartoon character images in which color plays a pivotal role. On this dataset, our approach yields a significant gain of 14% in mean AP over conventional state-of-the-art methods. |
doi_str_mv | 10.1109/CVPR.2012.6248068 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>swepub_6IE</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_liu_87580</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6248068</ieee_id><sourcerecordid>oai_DiVA_org_liu_87580</sourcerecordid><originalsourceid>FETCH-LOGICAL-i212t-1750b17c5e79703e230f8146fc5d2d20a47938eb2ab0c3ded3d83c93f6809d583</originalsourceid><addsrcrecordid>eNo9kE1LxDAYhCMquK79AeKlF2-2vnnT5uO41E9YUET3GpImlSzVLG0W8d9b2dW5DAMPwzCEnFMoKQV13ayeX0oEiiXHSgKXB-SUVlwwiijxkGRKyL_MqyMyo8BZwRVVJyQbxzVMmghQOCOXTezjkJuUhmC3yY95N8Vo175NufNpshA_z8hxZ_rRZ3ufk7e729fmoVg-3T82i2URkGIqqKjBUtHWXigBzCOD7ndJ19YOHYKphGLSWzQWWua8Y06yVrGOS1CulmxOrna945ffbK3eDOHDDN86mqBvwmqh4_Cu-7DVUtQSJvxihwfv_T-8P4X9ALhAUek</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Color attributes for object detection</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Shahbaz Khan, Fahad ; Anwer, Rao Muhammad ; van de Weijer, J. ; Bagdanov, A. D. ; Vanrell, M. ; Lopez, A. M.</creator><creatorcontrib>Shahbaz Khan, Fahad ; Anwer, Rao Muhammad ; van de Weijer, J. ; Bagdanov, A. D. ; Vanrell, M. ; Lopez, A. M.</creatorcontrib><description>State-of-the-art object detectors typically use shape information as a low level feature representation to capture the local structure of an object. This paper shows that early fusion of shape and color, as is popular in image classification, leads to a significant drop in performance for object detection. Moreover, such approaches also yields suboptimal results for object categories with varying importance of color and shape. In this paper we propose the use of color attributes as an explicit color representation for object detection. Color attributes are compact, computationally efficient, and when combined with traditional shape features provide state-of-the-art results for object detection. Our method is tested on the PASCAL VOC 2007 and 2009 datasets and results clearly show that our method improves over state-of-the-art techniques despite its simplicity. We also introduce a new dataset consisting of cartoon character images in which color plays a pivotal role. On this dataset, our approach yields a significant gain of 14% in mean AP over conventional state-of-the-art methods.</description><identifier>ISSN: 1063-6919</identifier><identifier>ISBN: 9781467312264</identifier><identifier>ISBN: 1467312266</identifier><identifier>ISBN: 1467312274</identifier><identifier>ISBN: 9781467312271</identifier><identifier>EISBN: 1467312282</identifier><identifier>EISBN: 1467312274</identifier><identifier>EISBN: 9781467312271</identifier><identifier>EISBN: 9781467312288</identifier><identifier>DOI: 10.1109/CVPR.2012.6248068</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computational modeling ; Feature extraction ; Histograms ; Image color analysis ; Lighting ; Object detection ; Shape ; TECHNOLOGY ; TEKNIKVETENSKAP</subject><ispartof>2012 IEEE Conference on Computer Vision and Pattern Recognition, 2012, p.3306-3313</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6248068$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,309,310,777,781,786,787,882,2052,4036,4037,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6248068$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-87580$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Shahbaz Khan, Fahad</creatorcontrib><creatorcontrib>Anwer, Rao Muhammad</creatorcontrib><creatorcontrib>van de Weijer, J.</creatorcontrib><creatorcontrib>Bagdanov, A. D.</creatorcontrib><creatorcontrib>Vanrell, M.</creatorcontrib><creatorcontrib>Lopez, A. M.</creatorcontrib><title>Color attributes for object detection</title><title>2012 IEEE Conference on Computer Vision and Pattern Recognition</title><addtitle>CVPR</addtitle><description>State-of-the-art object detectors typically use shape information as a low level feature representation to capture the local structure of an object. This paper shows that early fusion of shape and color, as is popular in image classification, leads to a significant drop in performance for object detection. Moreover, such approaches also yields suboptimal results for object categories with varying importance of color and shape. In this paper we propose the use of color attributes as an explicit color representation for object detection. Color attributes are compact, computationally efficient, and when combined with traditional shape features provide state-of-the-art results for object detection. Our method is tested on the PASCAL VOC 2007 and 2009 datasets and results clearly show that our method improves over state-of-the-art techniques despite its simplicity. We also introduce a new dataset consisting of cartoon character images in which color plays a pivotal role. On this dataset, our approach yields a significant gain of 14% in mean AP over conventional state-of-the-art methods.</description><subject>Computational modeling</subject><subject>Feature extraction</subject><subject>Histograms</subject><subject>Image color analysis</subject><subject>Lighting</subject><subject>Object detection</subject><subject>Shape</subject><subject>TECHNOLOGY</subject><subject>TEKNIKVETENSKAP</subject><issn>1063-6919</issn><isbn>9781467312264</isbn><isbn>1467312266</isbn><isbn>1467312274</isbn><isbn>9781467312271</isbn><isbn>1467312282</isbn><isbn>1467312274</isbn><isbn>9781467312271</isbn><isbn>9781467312288</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo9kE1LxDAYhCMquK79AeKlF2-2vnnT5uO41E9YUET3GpImlSzVLG0W8d9b2dW5DAMPwzCEnFMoKQV13ayeX0oEiiXHSgKXB-SUVlwwiijxkGRKyL_MqyMyo8BZwRVVJyQbxzVMmghQOCOXTezjkJuUhmC3yY95N8Vo175NufNpshA_z8hxZ_rRZ3ufk7e729fmoVg-3T82i2URkGIqqKjBUtHWXigBzCOD7ndJ19YOHYKphGLSWzQWWua8Y06yVrGOS1CulmxOrna945ffbK3eDOHDDN86mqBvwmqh4_Cu-7DVUtQSJvxihwfv_T-8P4X9ALhAUek</recordid><startdate>201206</startdate><enddate>201206</enddate><creator>Shahbaz Khan, Fahad</creator><creator>Anwer, Rao Muhammad</creator><creator>van de Weijer, J.</creator><creator>Bagdanov, A. D.</creator><creator>Vanrell, M.</creator><creator>Lopez, A. M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>ADTPV</scope><scope>BNKNJ</scope><scope>DG8</scope></search><sort><creationdate>201206</creationdate><title>Color attributes for object detection</title><author>Shahbaz Khan, Fahad ; Anwer, Rao Muhammad ; van de Weijer, J. ; Bagdanov, A. D. ; Vanrell, M. ; Lopez, A. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i212t-1750b17c5e79703e230f8146fc5d2d20a47938eb2ab0c3ded3d83c93f6809d583</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Computational modeling</topic><topic>Feature extraction</topic><topic>Histograms</topic><topic>Image color analysis</topic><topic>Lighting</topic><topic>Object detection</topic><topic>Shape</topic><topic>TECHNOLOGY</topic><topic>TEKNIKVETENSKAP</topic><toplevel>online_resources</toplevel><creatorcontrib>Shahbaz Khan, Fahad</creatorcontrib><creatorcontrib>Anwer, Rao Muhammad</creatorcontrib><creatorcontrib>van de Weijer, J.</creatorcontrib><creatorcontrib>Bagdanov, A. D.</creatorcontrib><creatorcontrib>Vanrell, M.</creatorcontrib><creatorcontrib>Lopez, A. M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>SwePub</collection><collection>SwePub Conference</collection><collection>SWEPUB Linköpings universitet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shahbaz Khan, Fahad</au><au>Anwer, Rao Muhammad</au><au>van de Weijer, J.</au><au>Bagdanov, A. D.</au><au>Vanrell, M.</au><au>Lopez, A. M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Color attributes for object detection</atitle><btitle>2012 IEEE Conference on Computer Vision and Pattern Recognition</btitle><stitle>CVPR</stitle><date>2012-06</date><risdate>2012</risdate><spage>3306</spage><epage>3313</epage><pages>3306-3313</pages><issn>1063-6919</issn><isbn>9781467312264</isbn><isbn>1467312266</isbn><isbn>1467312274</isbn><isbn>9781467312271</isbn><eisbn>1467312282</eisbn><eisbn>1467312274</eisbn><eisbn>9781467312271</eisbn><eisbn>9781467312288</eisbn><abstract>State-of-the-art object detectors typically use shape information as a low level feature representation to capture the local structure of an object. This paper shows that early fusion of shape and color, as is popular in image classification, leads to a significant drop in performance for object detection. Moreover, such approaches also yields suboptimal results for object categories with varying importance of color and shape. In this paper we propose the use of color attributes as an explicit color representation for object detection. Color attributes are compact, computationally efficient, and when combined with traditional shape features provide state-of-the-art results for object detection. Our method is tested on the PASCAL VOC 2007 and 2009 datasets and results clearly show that our method improves over state-of-the-art techniques despite its simplicity. We also introduce a new dataset consisting of cartoon character images in which color plays a pivotal role. On this dataset, our approach yields a significant gain of 14% in mean AP over conventional state-of-the-art methods.</abstract><pub>IEEE</pub><doi>10.1109/CVPR.2012.6248068</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1063-6919 |
ispartof | 2012 IEEE Conference on Computer Vision and Pattern Recognition, 2012, p.3306-3313 |
issn | 1063-6919 |
language | eng |
recordid | cdi_swepub_primary_oai_DiVA_org_liu_87580 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Computational modeling Feature extraction Histograms Image color analysis Lighting Object detection Shape TECHNOLOGY TEKNIKVETENSKAP |
title | Color attributes for object detection |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T20%3A45%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-swepub_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Color%20attributes%20for%20object%20detection&rft.btitle=2012%20IEEE%20Conference%20on%20Computer%20Vision%20and%20Pattern%20Recognition&rft.au=Shahbaz%20Khan,%20Fahad&rft.date=2012-06&rft.spage=3306&rft.epage=3313&rft.pages=3306-3313&rft.issn=1063-6919&rft.isbn=9781467312264&rft.isbn_list=1467312266&rft.isbn_list=1467312274&rft.isbn_list=9781467312271&rft_id=info:doi/10.1109/CVPR.2012.6248068&rft.eisbn=1467312282&rft.eisbn_list=1467312274&rft.eisbn_list=9781467312271&rft.eisbn_list=9781467312288&rft_dat=%3Cswepub_6IE%3Eoai_DiVA_org_liu_87580%3C/swepub_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i212t-1750b17c5e79703e230f8146fc5d2d20a47938eb2ab0c3ded3d83c93f6809d583%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6248068&rfr_iscdi=true |