Loading…
Model Selection Based Algorithm in Neonatal Chest EIT
This paper presents a new method for selecting a patient specific forward model to compensate for anatomical variations in electrical impedance tomography (EIT) monitoring of neonates. The method uses a combination of shape sensors and absolute reconstruction. It takes advantage of a probabilistic a...
Saved in:
Published in: | IEEE transactions on biomedical engineering 2021-09, Vol.68 (9), p.2752-2763 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c430t-ab685520cd59b01780635636e2b925b99681867e77308a8812bb43992912663a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c430t-ab685520cd59b01780635636e2b925b99681867e77308a8812bb43992912663a3 |
container_end_page | 2763 |
container_issue | 9 |
container_start_page | 2752 |
container_title | IEEE transactions on biomedical engineering |
container_volume | 68 |
creator | Seifnaraghi, Nima de Gelidi, Serena Nordebo, Sven Kallio, Merja Frerichs, Inez Tizzard, Andrew Suo-Palosaari, Maria Sophocleous, Louiza van Kaam, Anton H. Sorantin, Erich Demosthenous, Andreas Bayford, Richard H. |
description | This paper presents a new method for selecting a patient specific forward model to compensate for anatomical variations in electrical impedance tomography (EIT) monitoring of neonates. The method uses a combination of shape sensors and absolute reconstruction. It takes advantage of a probabilistic approach which automatically selects the best estimated forward model fit from pre-stored library models. Absolute/static image reconstruction is performed as the core of the posterior probability calculations. The validity and reliability of the algorithm in detecting a suitable model in the presence of measurement noise is studied with simulated and measured data from 11 patients. The paper also demonstrates the potential improvements on the clinical parameters extracted from EIT images by considering a unique case study with a neonate patient undergoing computed tomography imaging as clinical indication prior to EIT monitoring. Two well-known image reconstruction techniques, namely GREIT and tSVD, are implemented to create the final tidal images. The impacts of appropriate model selection on the clinical extracted parameters such as center of ventilation and silent spaces are investigated. The results show significant improvements to the final reconstructed images and more importantly to the clinical EIT parameters extracted from the images that are crucial for decision-making and further interventions. |
doi_str_mv | 10.1109/TBME.2021.3053463 |
format | article |
fullrecord | <record><control><sourceid>proquest_CHZPO</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_lnu_106797</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9330538</ieee_id><sourcerecordid>2480287465</sourcerecordid><originalsourceid>FETCH-LOGICAL-c430t-ab685520cd59b01780635636e2b925b99681867e77308a8812bb43992912663a3</originalsourceid><addsrcrecordid>eNpdkU9PwkAQxTdGI4h-AGNimnjxUtz_3T0CopKAHkSvm20ZoKR0sdvG-O3dBuTgaTKZ37y8mYfQNcF9QrB-mA9n4z7FlPQZFoxLdoK6RAgVU8HIKepiTFSsqeYddOH9JrRccXmOOozxRFLJu0jM3AKK6B0KyOrcldHQelhEg2Llqrxeb6O8jF7Blba2RTRag6-j8WR-ic6WtvBwdag99PE0no9e4unb82Q0mMYZZ7iObSqVEBRnC6FTTBKFJROSSaCppiLVWiqiZAJJwrCyShGappzp4JhQKZllPRTvdf037JrU7Kp8a6sf42xuHvPPgXHVyhRlYwiWiU4Cf7_nd5X7aoJZs819BkVhS3CNN5QrTFXCpQjo3T9045qqDNcYKiTVgmrMA0X2VFY57ytYHi0QbNoMTJuBaTMwhwzCzu1BuUm3sDhu_D09ADd7IAeA41izVkCxX2ZMhac</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2562952904</pqid></control><display><type>article</type><title>Model Selection Based Algorithm in Neonatal Chest EIT</title><source>IEEE Xplore All Conference Series</source><creator>Seifnaraghi, Nima ; de Gelidi, Serena ; Nordebo, Sven ; Kallio, Merja ; Frerichs, Inez ; Tizzard, Andrew ; Suo-Palosaari, Maria ; Sophocleous, Louiza ; van Kaam, Anton H. ; Sorantin, Erich ; Demosthenous, Andreas ; Bayford, Richard H.</creator><creatorcontrib>Seifnaraghi, Nima ; de Gelidi, Serena ; Nordebo, Sven ; Kallio, Merja ; Frerichs, Inez ; Tizzard, Andrew ; Suo-Palosaari, Maria ; Sophocleous, Louiza ; van Kaam, Anton H. ; Sorantin, Erich ; Demosthenous, Andreas ; Bayford, Richard H.</creatorcontrib><description>This paper presents a new method for selecting a patient specific forward model to compensate for anatomical variations in electrical impedance tomography (EIT) monitoring of neonates. The method uses a combination of shape sensors and absolute reconstruction. It takes advantage of a probabilistic approach which automatically selects the best estimated forward model fit from pre-stored library models. Absolute/static image reconstruction is performed as the core of the posterior probability calculations. The validity and reliability of the algorithm in detecting a suitable model in the presence of measurement noise is studied with simulated and measured data from 11 patients. The paper also demonstrates the potential improvements on the clinical parameters extracted from EIT images by considering a unique case study with a neonate patient undergoing computed tomography imaging as clinical indication prior to EIT monitoring. Two well-known image reconstruction techniques, namely GREIT and tSVD, are implemented to create the final tidal images. The impacts of appropriate model selection on the clinical extracted parameters such as center of ventilation and silent spaces are investigated. The results show significant improvements to the final reconstructed images and more importantly to the clinical EIT parameters extracted from the images that are crucial for decision-making and further interventions.</description><identifier>ISSN: 0018-9294</identifier><identifier>ISSN: 1558-2531</identifier><identifier>EISSN: 1558-2531</identifier><identifier>DOI: 10.1109/TBME.2021.3053463</identifier><identifier>PMID: 33476264</identifier><identifier>CODEN: IEBEAX</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Computed tomography ; Conditional probability ; Conductivity ; Decision making ; Electrical impedance ; Electrical impedance tomography ; Electrodes ; Electrotechnology ; Elektroteknik alt Electrical engineering ; Image processing ; Image reconstruction ; Imaging ; Lung ; Mathematical models ; Medical imaging ; model selection ; Monitoring ; neonatal chest EIT ; Neonates ; Noise measurement ; Parameters ; patient-specific prior model ; Patients ; Pediatrics ; Statistical analysis ; thorax modelling ; Tomography</subject><ispartof>IEEE transactions on biomedical engineering, 2021-09, Vol.68 (9), p.2752-2763</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c430t-ab685520cd59b01780635636e2b925b99681867e77308a8812bb43992912663a3</citedby><cites>FETCH-LOGICAL-c430t-ab685520cd59b01780635636e2b925b99681867e77308a8812bb43992912663a3</cites><orcidid>0000-0002-7712-6539 ; 0000-0002-6431-2404 ; 0000-0003-4030-7085 ; 0000-0002-2119-5359 ; 0000-0001-6141-2736 ; 0000-0002-7018-6248 ; 0000-0003-0799-344X ; 0000-0003-0623-963X ; 0000-0003-4081-0967 ; 0000-0001-8863-6385</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9330538$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,54555,54796,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9330538$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33476264$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-106797$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Seifnaraghi, Nima</creatorcontrib><creatorcontrib>de Gelidi, Serena</creatorcontrib><creatorcontrib>Nordebo, Sven</creatorcontrib><creatorcontrib>Kallio, Merja</creatorcontrib><creatorcontrib>Frerichs, Inez</creatorcontrib><creatorcontrib>Tizzard, Andrew</creatorcontrib><creatorcontrib>Suo-Palosaari, Maria</creatorcontrib><creatorcontrib>Sophocleous, Louiza</creatorcontrib><creatorcontrib>van Kaam, Anton H.</creatorcontrib><creatorcontrib>Sorantin, Erich</creatorcontrib><creatorcontrib>Demosthenous, Andreas</creatorcontrib><creatorcontrib>Bayford, Richard H.</creatorcontrib><title>Model Selection Based Algorithm in Neonatal Chest EIT</title><title>IEEE transactions on biomedical engineering</title><addtitle>TBME</addtitle><addtitle>IEEE Trans Biomed Eng</addtitle><description>This paper presents a new method for selecting a patient specific forward model to compensate for anatomical variations in electrical impedance tomography (EIT) monitoring of neonates. The method uses a combination of shape sensors and absolute reconstruction. It takes advantage of a probabilistic approach which automatically selects the best estimated forward model fit from pre-stored library models. Absolute/static image reconstruction is performed as the core of the posterior probability calculations. The validity and reliability of the algorithm in detecting a suitable model in the presence of measurement noise is studied with simulated and measured data from 11 patients. The paper also demonstrates the potential improvements on the clinical parameters extracted from EIT images by considering a unique case study with a neonate patient undergoing computed tomography imaging as clinical indication prior to EIT monitoring. Two well-known image reconstruction techniques, namely GREIT and tSVD, are implemented to create the final tidal images. The impacts of appropriate model selection on the clinical extracted parameters such as center of ventilation and silent spaces are investigated. The results show significant improvements to the final reconstructed images and more importantly to the clinical EIT parameters extracted from the images that are crucial for decision-making and further interventions.</description><subject>Algorithms</subject><subject>Computed tomography</subject><subject>Conditional probability</subject><subject>Conductivity</subject><subject>Decision making</subject><subject>Electrical impedance</subject><subject>Electrical impedance tomography</subject><subject>Electrodes</subject><subject>Electrotechnology</subject><subject>Elektroteknik alt Electrical engineering</subject><subject>Image processing</subject><subject>Image reconstruction</subject><subject>Imaging</subject><subject>Lung</subject><subject>Mathematical models</subject><subject>Medical imaging</subject><subject>model selection</subject><subject>Monitoring</subject><subject>neonatal chest EIT</subject><subject>Neonates</subject><subject>Noise measurement</subject><subject>Parameters</subject><subject>patient-specific prior model</subject><subject>Patients</subject><subject>Pediatrics</subject><subject>Statistical analysis</subject><subject>thorax modelling</subject><subject>Tomography</subject><issn>0018-9294</issn><issn>1558-2531</issn><issn>1558-2531</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdkU9PwkAQxTdGI4h-AGNimnjxUtz_3T0CopKAHkSvm20ZoKR0sdvG-O3dBuTgaTKZ37y8mYfQNcF9QrB-mA9n4z7FlPQZFoxLdoK6RAgVU8HIKepiTFSsqeYddOH9JrRccXmOOozxRFLJu0jM3AKK6B0KyOrcldHQelhEg2Llqrxeb6O8jF7Blba2RTRag6-j8WR-ic6WtvBwdag99PE0no9e4unb82Q0mMYZZ7iObSqVEBRnC6FTTBKFJROSSaCppiLVWiqiZAJJwrCyShGappzp4JhQKZllPRTvdf037JrU7Kp8a6sf42xuHvPPgXHVyhRlYwiWiU4Cf7_nd5X7aoJZs819BkVhS3CNN5QrTFXCpQjo3T9045qqDNcYKiTVgmrMA0X2VFY57ytYHi0QbNoMTJuBaTMwhwzCzu1BuUm3sDhu_D09ADd7IAeA41izVkCxX2ZMhac</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Seifnaraghi, Nima</creator><creator>de Gelidi, Serena</creator><creator>Nordebo, Sven</creator><creator>Kallio, Merja</creator><creator>Frerichs, Inez</creator><creator>Tizzard, Andrew</creator><creator>Suo-Palosaari, Maria</creator><creator>Sophocleous, Louiza</creator><creator>van Kaam, Anton H.</creator><creator>Sorantin, Erich</creator><creator>Demosthenous, Andreas</creator><creator>Bayford, Richard H.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D92</scope><orcidid>https://orcid.org/0000-0002-7712-6539</orcidid><orcidid>https://orcid.org/0000-0002-6431-2404</orcidid><orcidid>https://orcid.org/0000-0003-4030-7085</orcidid><orcidid>https://orcid.org/0000-0002-2119-5359</orcidid><orcidid>https://orcid.org/0000-0001-6141-2736</orcidid><orcidid>https://orcid.org/0000-0002-7018-6248</orcidid><orcidid>https://orcid.org/0000-0003-0799-344X</orcidid><orcidid>https://orcid.org/0000-0003-0623-963X</orcidid><orcidid>https://orcid.org/0000-0003-4081-0967</orcidid><orcidid>https://orcid.org/0000-0001-8863-6385</orcidid></search><sort><creationdate>20210901</creationdate><title>Model Selection Based Algorithm in Neonatal Chest EIT</title><author>Seifnaraghi, Nima ; de Gelidi, Serena ; Nordebo, Sven ; Kallio, Merja ; Frerichs, Inez ; Tizzard, Andrew ; Suo-Palosaari, Maria ; Sophocleous, Louiza ; van Kaam, Anton H. ; Sorantin, Erich ; Demosthenous, Andreas ; Bayford, Richard H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c430t-ab685520cd59b01780635636e2b925b99681867e77308a8812bb43992912663a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Computed tomography</topic><topic>Conditional probability</topic><topic>Conductivity</topic><topic>Decision making</topic><topic>Electrical impedance</topic><topic>Electrical impedance tomography</topic><topic>Electrodes</topic><topic>Electrotechnology</topic><topic>Elektroteknik alt Electrical engineering</topic><topic>Image processing</topic><topic>Image reconstruction</topic><topic>Imaging</topic><topic>Lung</topic><topic>Mathematical models</topic><topic>Medical imaging</topic><topic>model selection</topic><topic>Monitoring</topic><topic>neonatal chest EIT</topic><topic>Neonates</topic><topic>Noise measurement</topic><topic>Parameters</topic><topic>patient-specific prior model</topic><topic>Patients</topic><topic>Pediatrics</topic><topic>Statistical analysis</topic><topic>thorax modelling</topic><topic>Tomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Seifnaraghi, Nima</creatorcontrib><creatorcontrib>de Gelidi, Serena</creatorcontrib><creatorcontrib>Nordebo, Sven</creatorcontrib><creatorcontrib>Kallio, Merja</creatorcontrib><creatorcontrib>Frerichs, Inez</creatorcontrib><creatorcontrib>Tizzard, Andrew</creatorcontrib><creatorcontrib>Suo-Palosaari, Maria</creatorcontrib><creatorcontrib>Sophocleous, Louiza</creatorcontrib><creatorcontrib>van Kaam, Anton H.</creatorcontrib><creatorcontrib>Sorantin, Erich</creatorcontrib><creatorcontrib>Demosthenous, Andreas</creatorcontrib><creatorcontrib>Bayford, Richard H.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Linnéuniversitetet</collection><jtitle>IEEE transactions on biomedical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Seifnaraghi, Nima</au><au>de Gelidi, Serena</au><au>Nordebo, Sven</au><au>Kallio, Merja</au><au>Frerichs, Inez</au><au>Tizzard, Andrew</au><au>Suo-Palosaari, Maria</au><au>Sophocleous, Louiza</au><au>van Kaam, Anton H.</au><au>Sorantin, Erich</au><au>Demosthenous, Andreas</au><au>Bayford, Richard H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Model Selection Based Algorithm in Neonatal Chest EIT</atitle><jtitle>IEEE transactions on biomedical engineering</jtitle><stitle>TBME</stitle><addtitle>IEEE Trans Biomed Eng</addtitle><date>2021-09-01</date><risdate>2021</risdate><volume>68</volume><issue>9</issue><spage>2752</spage><epage>2763</epage><pages>2752-2763</pages><issn>0018-9294</issn><issn>1558-2531</issn><eissn>1558-2531</eissn><coden>IEBEAX</coden><abstract>This paper presents a new method for selecting a patient specific forward model to compensate for anatomical variations in electrical impedance tomography (EIT) monitoring of neonates. The method uses a combination of shape sensors and absolute reconstruction. It takes advantage of a probabilistic approach which automatically selects the best estimated forward model fit from pre-stored library models. Absolute/static image reconstruction is performed as the core of the posterior probability calculations. The validity and reliability of the algorithm in detecting a suitable model in the presence of measurement noise is studied with simulated and measured data from 11 patients. The paper also demonstrates the potential improvements on the clinical parameters extracted from EIT images by considering a unique case study with a neonate patient undergoing computed tomography imaging as clinical indication prior to EIT monitoring. Two well-known image reconstruction techniques, namely GREIT and tSVD, are implemented to create the final tidal images. The impacts of appropriate model selection on the clinical extracted parameters such as center of ventilation and silent spaces are investigated. The results show significant improvements to the final reconstructed images and more importantly to the clinical EIT parameters extracted from the images that are crucial for decision-making and further interventions.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>33476264</pmid><doi>10.1109/TBME.2021.3053463</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-7712-6539</orcidid><orcidid>https://orcid.org/0000-0002-6431-2404</orcidid><orcidid>https://orcid.org/0000-0003-4030-7085</orcidid><orcidid>https://orcid.org/0000-0002-2119-5359</orcidid><orcidid>https://orcid.org/0000-0001-6141-2736</orcidid><orcidid>https://orcid.org/0000-0002-7018-6248</orcidid><orcidid>https://orcid.org/0000-0003-0799-344X</orcidid><orcidid>https://orcid.org/0000-0003-0623-963X</orcidid><orcidid>https://orcid.org/0000-0003-4081-0967</orcidid><orcidid>https://orcid.org/0000-0001-8863-6385</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9294 |
ispartof | IEEE transactions on biomedical engineering, 2021-09, Vol.68 (9), p.2752-2763 |
issn | 0018-9294 1558-2531 1558-2531 |
language | eng |
recordid | cdi_swepub_primary_oai_DiVA_org_lnu_106797 |
source | IEEE Xplore All Conference Series |
subjects | Algorithms Computed tomography Conditional probability Conductivity Decision making Electrical impedance Electrical impedance tomography Electrodes Electrotechnology Elektroteknik alt Electrical engineering Image processing Image reconstruction Imaging Lung Mathematical models Medical imaging model selection Monitoring neonatal chest EIT Neonates Noise measurement Parameters patient-specific prior model Patients Pediatrics Statistical analysis thorax modelling Tomography |
title | Model Selection Based Algorithm in Neonatal Chest EIT |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T10%3A51%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Model%20Selection%20Based%20Algorithm%20in%20Neonatal%20Chest%20EIT&rft.jtitle=IEEE%20transactions%20on%20biomedical%20engineering&rft.au=Seifnaraghi,%20Nima&rft.date=2021-09-01&rft.volume=68&rft.issue=9&rft.spage=2752&rft.epage=2763&rft.pages=2752-2763&rft.issn=0018-9294&rft.eissn=1558-2531&rft.coden=IEBEAX&rft_id=info:doi/10.1109/TBME.2021.3053463&rft_dat=%3Cproquest_CHZPO%3E2480287465%3C/proquest_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c430t-ab685520cd59b01780635636e2b925b99681867e77308a8812bb43992912663a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2562952904&rft_id=info:pmid/33476264&rft_ieee_id=9330538&rfr_iscdi=true |