Loading…

Model Selection Based Algorithm in Neonatal Chest EIT

This paper presents a new method for selecting a patient specific forward model to compensate for anatomical variations in electrical impedance tomography (EIT) monitoring of neonates. The method uses a combination of shape sensors and absolute reconstruction. It takes advantage of a probabilistic a...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on biomedical engineering 2021-09, Vol.68 (9), p.2752-2763
Main Authors: Seifnaraghi, Nima, de Gelidi, Serena, Nordebo, Sven, Kallio, Merja, Frerichs, Inez, Tizzard, Andrew, Suo-Palosaari, Maria, Sophocleous, Louiza, van Kaam, Anton H., Sorantin, Erich, Demosthenous, Andreas, Bayford, Richard H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c430t-ab685520cd59b01780635636e2b925b99681867e77308a8812bb43992912663a3
cites cdi_FETCH-LOGICAL-c430t-ab685520cd59b01780635636e2b925b99681867e77308a8812bb43992912663a3
container_end_page 2763
container_issue 9
container_start_page 2752
container_title IEEE transactions on biomedical engineering
container_volume 68
creator Seifnaraghi, Nima
de Gelidi, Serena
Nordebo, Sven
Kallio, Merja
Frerichs, Inez
Tizzard, Andrew
Suo-Palosaari, Maria
Sophocleous, Louiza
van Kaam, Anton H.
Sorantin, Erich
Demosthenous, Andreas
Bayford, Richard H.
description This paper presents a new method for selecting a patient specific forward model to compensate for anatomical variations in electrical impedance tomography (EIT) monitoring of neonates. The method uses a combination of shape sensors and absolute reconstruction. It takes advantage of a probabilistic approach which automatically selects the best estimated forward model fit from pre-stored library models. Absolute/static image reconstruction is performed as the core of the posterior probability calculations. The validity and reliability of the algorithm in detecting a suitable model in the presence of measurement noise is studied with simulated and measured data from 11 patients. The paper also demonstrates the potential improvements on the clinical parameters extracted from EIT images by considering a unique case study with a neonate patient undergoing computed tomography imaging as clinical indication prior to EIT monitoring. Two well-known image reconstruction techniques, namely GREIT and tSVD, are implemented to create the final tidal images. The impacts of appropriate model selection on the clinical extracted parameters such as center of ventilation and silent spaces are investigated. The results show significant improvements to the final reconstructed images and more importantly to the clinical EIT parameters extracted from the images that are crucial for decision-making and further interventions.
doi_str_mv 10.1109/TBME.2021.3053463
format article
fullrecord <record><control><sourceid>proquest_CHZPO</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_lnu_106797</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9330538</ieee_id><sourcerecordid>2480287465</sourcerecordid><originalsourceid>FETCH-LOGICAL-c430t-ab685520cd59b01780635636e2b925b99681867e77308a8812bb43992912663a3</originalsourceid><addsrcrecordid>eNpdkU9PwkAQxTdGI4h-AGNimnjxUtz_3T0CopKAHkSvm20ZoKR0sdvG-O3dBuTgaTKZ37y8mYfQNcF9QrB-mA9n4z7FlPQZFoxLdoK6RAgVU8HIKepiTFSsqeYddOH9JrRccXmOOozxRFLJu0jM3AKK6B0KyOrcldHQelhEg2Llqrxeb6O8jF7Blba2RTRag6-j8WR-ic6WtvBwdag99PE0no9e4unb82Q0mMYZZ7iObSqVEBRnC6FTTBKFJROSSaCppiLVWiqiZAJJwrCyShGappzp4JhQKZllPRTvdf037JrU7Kp8a6sf42xuHvPPgXHVyhRlYwiWiU4Cf7_nd5X7aoJZs819BkVhS3CNN5QrTFXCpQjo3T9045qqDNcYKiTVgmrMA0X2VFY57ytYHi0QbNoMTJuBaTMwhwzCzu1BuUm3sDhu_D09ADd7IAeA41izVkCxX2ZMhac</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2562952904</pqid></control><display><type>article</type><title>Model Selection Based Algorithm in Neonatal Chest EIT</title><source>IEEE Xplore All Conference Series</source><creator>Seifnaraghi, Nima ; de Gelidi, Serena ; Nordebo, Sven ; Kallio, Merja ; Frerichs, Inez ; Tizzard, Andrew ; Suo-Palosaari, Maria ; Sophocleous, Louiza ; van Kaam, Anton H. ; Sorantin, Erich ; Demosthenous, Andreas ; Bayford, Richard H.</creator><creatorcontrib>Seifnaraghi, Nima ; de Gelidi, Serena ; Nordebo, Sven ; Kallio, Merja ; Frerichs, Inez ; Tizzard, Andrew ; Suo-Palosaari, Maria ; Sophocleous, Louiza ; van Kaam, Anton H. ; Sorantin, Erich ; Demosthenous, Andreas ; Bayford, Richard H.</creatorcontrib><description>This paper presents a new method for selecting a patient specific forward model to compensate for anatomical variations in electrical impedance tomography (EIT) monitoring of neonates. The method uses a combination of shape sensors and absolute reconstruction. It takes advantage of a probabilistic approach which automatically selects the best estimated forward model fit from pre-stored library models. Absolute/static image reconstruction is performed as the core of the posterior probability calculations. The validity and reliability of the algorithm in detecting a suitable model in the presence of measurement noise is studied with simulated and measured data from 11 patients. The paper also demonstrates the potential improvements on the clinical parameters extracted from EIT images by considering a unique case study with a neonate patient undergoing computed tomography imaging as clinical indication prior to EIT monitoring. Two well-known image reconstruction techniques, namely GREIT and tSVD, are implemented to create the final tidal images. The impacts of appropriate model selection on the clinical extracted parameters such as center of ventilation and silent spaces are investigated. The results show significant improvements to the final reconstructed images and more importantly to the clinical EIT parameters extracted from the images that are crucial for decision-making and further interventions.</description><identifier>ISSN: 0018-9294</identifier><identifier>ISSN: 1558-2531</identifier><identifier>EISSN: 1558-2531</identifier><identifier>DOI: 10.1109/TBME.2021.3053463</identifier><identifier>PMID: 33476264</identifier><identifier>CODEN: IEBEAX</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Computed tomography ; Conditional probability ; Conductivity ; Decision making ; Electrical impedance ; Electrical impedance tomography ; Electrodes ; Electrotechnology ; Elektroteknik alt Electrical engineering ; Image processing ; Image reconstruction ; Imaging ; Lung ; Mathematical models ; Medical imaging ; model selection ; Monitoring ; neonatal chest EIT ; Neonates ; Noise measurement ; Parameters ; patient-specific prior model ; Patients ; Pediatrics ; Statistical analysis ; thorax modelling ; Tomography</subject><ispartof>IEEE transactions on biomedical engineering, 2021-09, Vol.68 (9), p.2752-2763</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c430t-ab685520cd59b01780635636e2b925b99681867e77308a8812bb43992912663a3</citedby><cites>FETCH-LOGICAL-c430t-ab685520cd59b01780635636e2b925b99681867e77308a8812bb43992912663a3</cites><orcidid>0000-0002-7712-6539 ; 0000-0002-6431-2404 ; 0000-0003-4030-7085 ; 0000-0002-2119-5359 ; 0000-0001-6141-2736 ; 0000-0002-7018-6248 ; 0000-0003-0799-344X ; 0000-0003-0623-963X ; 0000-0003-4081-0967 ; 0000-0001-8863-6385</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9330538$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,54555,54796,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9330538$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33476264$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-106797$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Seifnaraghi, Nima</creatorcontrib><creatorcontrib>de Gelidi, Serena</creatorcontrib><creatorcontrib>Nordebo, Sven</creatorcontrib><creatorcontrib>Kallio, Merja</creatorcontrib><creatorcontrib>Frerichs, Inez</creatorcontrib><creatorcontrib>Tizzard, Andrew</creatorcontrib><creatorcontrib>Suo-Palosaari, Maria</creatorcontrib><creatorcontrib>Sophocleous, Louiza</creatorcontrib><creatorcontrib>van Kaam, Anton H.</creatorcontrib><creatorcontrib>Sorantin, Erich</creatorcontrib><creatorcontrib>Demosthenous, Andreas</creatorcontrib><creatorcontrib>Bayford, Richard H.</creatorcontrib><title>Model Selection Based Algorithm in Neonatal Chest EIT</title><title>IEEE transactions on biomedical engineering</title><addtitle>TBME</addtitle><addtitle>IEEE Trans Biomed Eng</addtitle><description>This paper presents a new method for selecting a patient specific forward model to compensate for anatomical variations in electrical impedance tomography (EIT) monitoring of neonates. The method uses a combination of shape sensors and absolute reconstruction. It takes advantage of a probabilistic approach which automatically selects the best estimated forward model fit from pre-stored library models. Absolute/static image reconstruction is performed as the core of the posterior probability calculations. The validity and reliability of the algorithm in detecting a suitable model in the presence of measurement noise is studied with simulated and measured data from 11 patients. The paper also demonstrates the potential improvements on the clinical parameters extracted from EIT images by considering a unique case study with a neonate patient undergoing computed tomography imaging as clinical indication prior to EIT monitoring. Two well-known image reconstruction techniques, namely GREIT and tSVD, are implemented to create the final tidal images. The impacts of appropriate model selection on the clinical extracted parameters such as center of ventilation and silent spaces are investigated. The results show significant improvements to the final reconstructed images and more importantly to the clinical EIT parameters extracted from the images that are crucial for decision-making and further interventions.</description><subject>Algorithms</subject><subject>Computed tomography</subject><subject>Conditional probability</subject><subject>Conductivity</subject><subject>Decision making</subject><subject>Electrical impedance</subject><subject>Electrical impedance tomography</subject><subject>Electrodes</subject><subject>Electrotechnology</subject><subject>Elektroteknik alt Electrical engineering</subject><subject>Image processing</subject><subject>Image reconstruction</subject><subject>Imaging</subject><subject>Lung</subject><subject>Mathematical models</subject><subject>Medical imaging</subject><subject>model selection</subject><subject>Monitoring</subject><subject>neonatal chest EIT</subject><subject>Neonates</subject><subject>Noise measurement</subject><subject>Parameters</subject><subject>patient-specific prior model</subject><subject>Patients</subject><subject>Pediatrics</subject><subject>Statistical analysis</subject><subject>thorax modelling</subject><subject>Tomography</subject><issn>0018-9294</issn><issn>1558-2531</issn><issn>1558-2531</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdkU9PwkAQxTdGI4h-AGNimnjxUtz_3T0CopKAHkSvm20ZoKR0sdvG-O3dBuTgaTKZ37y8mYfQNcF9QrB-mA9n4z7FlPQZFoxLdoK6RAgVU8HIKepiTFSsqeYddOH9JrRccXmOOozxRFLJu0jM3AKK6B0KyOrcldHQelhEg2Llqrxeb6O8jF7Blba2RTRag6-j8WR-ic6WtvBwdag99PE0no9e4unb82Q0mMYZZ7iObSqVEBRnC6FTTBKFJROSSaCppiLVWiqiZAJJwrCyShGappzp4JhQKZllPRTvdf037JrU7Kp8a6sf42xuHvPPgXHVyhRlYwiWiU4Cf7_nd5X7aoJZs819BkVhS3CNN5QrTFXCpQjo3T9045qqDNcYKiTVgmrMA0X2VFY57ytYHi0QbNoMTJuBaTMwhwzCzu1BuUm3sDhu_D09ADd7IAeA41izVkCxX2ZMhac</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Seifnaraghi, Nima</creator><creator>de Gelidi, Serena</creator><creator>Nordebo, Sven</creator><creator>Kallio, Merja</creator><creator>Frerichs, Inez</creator><creator>Tizzard, Andrew</creator><creator>Suo-Palosaari, Maria</creator><creator>Sophocleous, Louiza</creator><creator>van Kaam, Anton H.</creator><creator>Sorantin, Erich</creator><creator>Demosthenous, Andreas</creator><creator>Bayford, Richard H.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D92</scope><orcidid>https://orcid.org/0000-0002-7712-6539</orcidid><orcidid>https://orcid.org/0000-0002-6431-2404</orcidid><orcidid>https://orcid.org/0000-0003-4030-7085</orcidid><orcidid>https://orcid.org/0000-0002-2119-5359</orcidid><orcidid>https://orcid.org/0000-0001-6141-2736</orcidid><orcidid>https://orcid.org/0000-0002-7018-6248</orcidid><orcidid>https://orcid.org/0000-0003-0799-344X</orcidid><orcidid>https://orcid.org/0000-0003-0623-963X</orcidid><orcidid>https://orcid.org/0000-0003-4081-0967</orcidid><orcidid>https://orcid.org/0000-0001-8863-6385</orcidid></search><sort><creationdate>20210901</creationdate><title>Model Selection Based Algorithm in Neonatal Chest EIT</title><author>Seifnaraghi, Nima ; de Gelidi, Serena ; Nordebo, Sven ; Kallio, Merja ; Frerichs, Inez ; Tizzard, Andrew ; Suo-Palosaari, Maria ; Sophocleous, Louiza ; van Kaam, Anton H. ; Sorantin, Erich ; Demosthenous, Andreas ; Bayford, Richard H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c430t-ab685520cd59b01780635636e2b925b99681867e77308a8812bb43992912663a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Computed tomography</topic><topic>Conditional probability</topic><topic>Conductivity</topic><topic>Decision making</topic><topic>Electrical impedance</topic><topic>Electrical impedance tomography</topic><topic>Electrodes</topic><topic>Electrotechnology</topic><topic>Elektroteknik alt Electrical engineering</topic><topic>Image processing</topic><topic>Image reconstruction</topic><topic>Imaging</topic><topic>Lung</topic><topic>Mathematical models</topic><topic>Medical imaging</topic><topic>model selection</topic><topic>Monitoring</topic><topic>neonatal chest EIT</topic><topic>Neonates</topic><topic>Noise measurement</topic><topic>Parameters</topic><topic>patient-specific prior model</topic><topic>Patients</topic><topic>Pediatrics</topic><topic>Statistical analysis</topic><topic>thorax modelling</topic><topic>Tomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Seifnaraghi, Nima</creatorcontrib><creatorcontrib>de Gelidi, Serena</creatorcontrib><creatorcontrib>Nordebo, Sven</creatorcontrib><creatorcontrib>Kallio, Merja</creatorcontrib><creatorcontrib>Frerichs, Inez</creatorcontrib><creatorcontrib>Tizzard, Andrew</creatorcontrib><creatorcontrib>Suo-Palosaari, Maria</creatorcontrib><creatorcontrib>Sophocleous, Louiza</creatorcontrib><creatorcontrib>van Kaam, Anton H.</creatorcontrib><creatorcontrib>Sorantin, Erich</creatorcontrib><creatorcontrib>Demosthenous, Andreas</creatorcontrib><creatorcontrib>Bayford, Richard H.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Linnéuniversitetet</collection><jtitle>IEEE transactions on biomedical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Seifnaraghi, Nima</au><au>de Gelidi, Serena</au><au>Nordebo, Sven</au><au>Kallio, Merja</au><au>Frerichs, Inez</au><au>Tizzard, Andrew</au><au>Suo-Palosaari, Maria</au><au>Sophocleous, Louiza</au><au>van Kaam, Anton H.</au><au>Sorantin, Erich</au><au>Demosthenous, Andreas</au><au>Bayford, Richard H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Model Selection Based Algorithm in Neonatal Chest EIT</atitle><jtitle>IEEE transactions on biomedical engineering</jtitle><stitle>TBME</stitle><addtitle>IEEE Trans Biomed Eng</addtitle><date>2021-09-01</date><risdate>2021</risdate><volume>68</volume><issue>9</issue><spage>2752</spage><epage>2763</epage><pages>2752-2763</pages><issn>0018-9294</issn><issn>1558-2531</issn><eissn>1558-2531</eissn><coden>IEBEAX</coden><abstract>This paper presents a new method for selecting a patient specific forward model to compensate for anatomical variations in electrical impedance tomography (EIT) monitoring of neonates. The method uses a combination of shape sensors and absolute reconstruction. It takes advantage of a probabilistic approach which automatically selects the best estimated forward model fit from pre-stored library models. Absolute/static image reconstruction is performed as the core of the posterior probability calculations. The validity and reliability of the algorithm in detecting a suitable model in the presence of measurement noise is studied with simulated and measured data from 11 patients. The paper also demonstrates the potential improvements on the clinical parameters extracted from EIT images by considering a unique case study with a neonate patient undergoing computed tomography imaging as clinical indication prior to EIT monitoring. Two well-known image reconstruction techniques, namely GREIT and tSVD, are implemented to create the final tidal images. The impacts of appropriate model selection on the clinical extracted parameters such as center of ventilation and silent spaces are investigated. The results show significant improvements to the final reconstructed images and more importantly to the clinical EIT parameters extracted from the images that are crucial for decision-making and further interventions.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>33476264</pmid><doi>10.1109/TBME.2021.3053463</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-7712-6539</orcidid><orcidid>https://orcid.org/0000-0002-6431-2404</orcidid><orcidid>https://orcid.org/0000-0003-4030-7085</orcidid><orcidid>https://orcid.org/0000-0002-2119-5359</orcidid><orcidid>https://orcid.org/0000-0001-6141-2736</orcidid><orcidid>https://orcid.org/0000-0002-7018-6248</orcidid><orcidid>https://orcid.org/0000-0003-0799-344X</orcidid><orcidid>https://orcid.org/0000-0003-0623-963X</orcidid><orcidid>https://orcid.org/0000-0003-4081-0967</orcidid><orcidid>https://orcid.org/0000-0001-8863-6385</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9294
ispartof IEEE transactions on biomedical engineering, 2021-09, Vol.68 (9), p.2752-2763
issn 0018-9294
1558-2531
1558-2531
language eng
recordid cdi_swepub_primary_oai_DiVA_org_lnu_106797
source IEEE Xplore All Conference Series
subjects Algorithms
Computed tomography
Conditional probability
Conductivity
Decision making
Electrical impedance
Electrical impedance tomography
Electrodes
Electrotechnology
Elektroteknik alt Electrical engineering
Image processing
Image reconstruction
Imaging
Lung
Mathematical models
Medical imaging
model selection
Monitoring
neonatal chest EIT
Neonates
Noise measurement
Parameters
patient-specific prior model
Patients
Pediatrics
Statistical analysis
thorax modelling
Tomography
title Model Selection Based Algorithm in Neonatal Chest EIT
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T10%3A51%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Model%20Selection%20Based%20Algorithm%20in%20Neonatal%20Chest%20EIT&rft.jtitle=IEEE%20transactions%20on%20biomedical%20engineering&rft.au=Seifnaraghi,%20Nima&rft.date=2021-09-01&rft.volume=68&rft.issue=9&rft.spage=2752&rft.epage=2763&rft.pages=2752-2763&rft.issn=0018-9294&rft.eissn=1558-2531&rft.coden=IEBEAX&rft_id=info:doi/10.1109/TBME.2021.3053463&rft_dat=%3Cproquest_CHZPO%3E2480287465%3C/proquest_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c430t-ab685520cd59b01780635636e2b925b99681867e77308a8812bb43992912663a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2562952904&rft_id=info:pmid/33476264&rft_ieee_id=9330538&rfr_iscdi=true