Loading…
Influence of Wooden Board Strength Class on the Performance of Cross-laminated Timber Plates Investigated by Means of Full-field Deformation Measurements
ABSTRACT Although cross‐laminated timber (CLT) plates are increasingly used in high‐performance building structures, a tailored composition of them or, at least, a performance‐based classification scheme is not available. Especially, the influence of the quality of the ‘raw’ material (wooden boards)...
Saved in:
Published in: | Strain 2014-04, Vol.50 (2), p.161-173 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | ABSTRACT
Although cross‐laminated timber (CLT) plates are increasingly used in high‐performance building structures, a tailored composition of them or, at least, a performance‐based classification scheme is not available. Especially, the influence of the quality of the ‘raw’ material (wooden boards) on the load carrying capacity of CLT elements is hardly investigated yet. For this reason, within this work, bending tests on 24 CLT plates consisting of wooden boards from three different strength classes have been carried out. The global mechanical response as well as the formation of failure mechanisms were investigated, including a full‐field deformation measurement system, which allowed for a qualitatively as well as quantitatively identification of board failure modes. Interestingly, no influence of the board strength class on the elastic limit load of the CLT plates was observed, but the situation was different for the load displacement history beyond the elastic regime, where basically, two different global failure mechanisms could be distinguished. The obtained knowledge about the ‘post‐elastic’ behaviour of CLT plates may serve as a basis for the optimisation of CLT products and the development or improvement of design concepts, respectively. Moreover, the obtained large ‘post‐elastic’ capacity reserve of CLT consisting of high quality boards could lead to a better utilisation of the raw material. |
---|---|
ISSN: | 0039-2103 1475-1305 1475-1305 |
DOI: | 10.1111/str.12077 |