Loading…

Low temperature, autotrophic microbial denitrification using thiosulfate or thiocyanate as electron donor

Wastewaters generated during mining and processing of metal sulfide ores are often acidic (pH 

Saved in:
Bibliographic Details
Published in:Biodegradation (Dordrecht) 2017-08, Vol.28 (4), p.287-301
Main Authors: Broman, Elias, Jawad, Abbtesaim, Wu, Xiaofen, Christel, Stephan, Ni, Gaofeng, Lopez-Fernandez, Margarita, Sundkvist, Jan-Eric, Dopson, Mark
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c612t-35282fc3ee484440219613cc6410972fc49fd451559d6fbc50f7490ee8af76ae3
cites cdi_FETCH-LOGICAL-c612t-35282fc3ee484440219613cc6410972fc49fd451559d6fbc50f7490ee8af76ae3
container_end_page 301
container_issue 4
container_start_page 287
container_title Biodegradation (Dordrecht)
container_volume 28
creator Broman, Elias
Jawad, Abbtesaim
Wu, Xiaofen
Christel, Stephan
Ni, Gaofeng
Lopez-Fernandez, Margarita
Sundkvist, Jan-Eric
Dopson, Mark
description Wastewaters generated during mining and processing of metal sulfide ores are often acidic (pH 
doi_str_mv 10.1007/s10532-017-9796-7
format article
fullrecord <record><control><sourceid>gale_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_lnu_64704</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A712296310</galeid><sourcerecordid>A712296310</sourcerecordid><originalsourceid>FETCH-LOGICAL-c612t-35282fc3ee484440219613cc6410972fc49fd451559d6fbc50f7490ee8af76ae3</originalsourceid><addsrcrecordid>eNp1UU1v1DAUtBCILoUfwAVF4toU2_FHfEFaFQpIK3EBrpbXec66ytqL7VD13-Ntlqo9IB_s8ZsZvfcGobcEXxKM5YdMMO9oi4lslVSilc_QinBJK6LqOVphRbtW9RSfoVc532CMlcT0JTqjPZf1JVbIb-JtU2B_gGTKnOCiMXOJJcXDzttm722KW2-mZoDgS_LOW1N8DM2cfRibsvMxz5MzBZqY7qG9M-EITW5gAludQjPEENNr9MKZKcOb032Ofl5__nH1td18__Ltar1prSC0tB2nPXW2A2A9YwxTogTprBWM1O5rhSk3ME44V4NwW8uxk0xhgN44KQx05-hi8c23cJi3-pD83qQ7HY3Xn_yvtY5p1FOYtWASs0r_uNArdw-DhVCSmZ6onlaC3-kx_tGcYyx6UQ3enwxS_D1DLvomzinUETVRRIgO95xW1uXCGs0E2gdXd2xsPQPUJccAztf_tSSUKtERXAVkEdQEck7gHloiWB_T10v6uqavj-lrWTXvHs_yoPgXdyXQ025qKYyQHvX6X9e_ODC9WQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1916630852</pqid></control><display><type>article</type><title>Low temperature, autotrophic microbial denitrification using thiosulfate or thiocyanate as electron donor</title><source>Springer Nature</source><creator>Broman, Elias ; Jawad, Abbtesaim ; Wu, Xiaofen ; Christel, Stephan ; Ni, Gaofeng ; Lopez-Fernandez, Margarita ; Sundkvist, Jan-Eric ; Dopson, Mark</creator><creatorcontrib>Broman, Elias ; Jawad, Abbtesaim ; Wu, Xiaofen ; Christel, Stephan ; Ni, Gaofeng ; Lopez-Fernandez, Margarita ; Sundkvist, Jan-Eric ; Dopson, Mark</creatorcontrib><description>Wastewaters generated during mining and processing of metal sulfide ores are often acidic (pH &lt; 3) and can contain significant concentrations of nitrate, nitrite, and ammonium from nitrogen based explosives. In addition, wastewaters from sulfide ore treatment plants and tailings ponds typically contain large amounts of inorganic sulfur compounds, such as thiosulfate and tetrathionate. Release of these wastewaters can lead to environmental acidification as well as an increase in nutrients (eutrophication) and compounds that are potentially toxic to humans and animals. Waters from cyanidation plants for gold extraction will often conjointly include toxic, sulfur containing thiocyanate. More stringent regulatory limits on the release of mining wastes containing compounds such as inorganic sulfur compounds, nitrate, and thiocyanate, along the need to increase production from sulfide mineral mining calls for low cost techniques to remove these pollutants under ambient temperatures (approximately 8 °C). In this study, we used both aerobic and anaerobic continuous cultures to successfully couple inorganic sulfur compound (i.e. thiosulfate and thiocyanate) oxidation for the removal of nitrogenous compounds under neutral to acidic pH at the low temperatures typical for boreal climates. Furthermore, the development of the respective microbial communities was identified over time by DNA sequencing, and found to contain a consortium including populations aligning within Flavobacterium , Thiobacillus , and Comamonadaceae lineages. This is the first study to remediate mining waste waters by coupling autotrophic thiocyanate oxidation to nitrate reduction at low temperatures and acidic pH by means of an identified microbial community.</description><identifier>ISSN: 0923-9820</identifier><identifier>ISSN: 1572-9729</identifier><identifier>EISSN: 1572-9729</identifier><identifier>DOI: 10.1007/s10532-017-9796-7</identifier><identifier>PMID: 28577026</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Acidic oxides ; Acidification ; Aerobiosis ; Alignment ; Ambient temperature ; Ammonium ; Ammonium compounds ; Anaerobiosis ; Aquatic Pollution ; Autotrophic Processes - drug effects ; Biodegradation, Environmental - drug effects ; Biomedical and Life Sciences ; Bioreactors - microbiology ; Bioremediation ; Climate ; Cold Temperature ; Consortia ; Cultures ; Cyanidation ; Denitrification ; Denitrification - drug effects ; Deoxyribonucleic acid ; DNA ; DNA sequences ; DNA sequencing ; Electrons ; Ethylenediaminetetraacetic acid ; Eutrophication ; Explosives ; Geochemistry ; Gold ; Heavy metals ; Hydrogen-Ion Concentration ; Identification ; Life Sciences ; Low cost ; Low temperature ; Microbial activity ; Microbiology ; Microorganisms ; Mikrobiologi ; Mine tailings ; Mine wastes ; Mineral industry ; Mineral nutrients ; Minerals ; Mining ; Mining industry ; Nitrate reduction ; Nitrites ; Nitrogen ; Nitrogen compounds ; Nucleotide sequencing ; Nutrients ; Ores ; Original Paper ; Oxidation ; Phylogeny ; Plant extracts ; Pollutants ; Ponds ; Populations ; Reduction (metal working) ; Sequencing ; Soil Science &amp; Conservation ; Sulfides ; Sulfur ; Sulfur compounds ; Sulphides ; Temperature effects ; Terrestrial Pollution ; Tetrathionate ; Thiocyanates - pharmacology ; Thiosulfate ; Thiosulfates - pharmacology ; Waste Management/Waste Technology ; Waste Water Technology ; Wastes ; Wastewater ; Water Management ; Water Pollution Control ; Water treatment</subject><ispartof>Biodegradation (Dordrecht), 2017-08, Vol.28 (4), p.287-301</ispartof><rights>The Author(s) 2017</rights><rights>COPYRIGHT 2017 Springer</rights><rights>Biodegradation is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c612t-35282fc3ee484440219613cc6410972fc49fd451559d6fbc50f7490ee8af76ae3</citedby><cites>FETCH-LOGICAL-c612t-35282fc3ee484440219613cc6410972fc49fd451559d6fbc50f7490ee8af76ae3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28577026$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-64704$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Broman, Elias</creatorcontrib><creatorcontrib>Jawad, Abbtesaim</creatorcontrib><creatorcontrib>Wu, Xiaofen</creatorcontrib><creatorcontrib>Christel, Stephan</creatorcontrib><creatorcontrib>Ni, Gaofeng</creatorcontrib><creatorcontrib>Lopez-Fernandez, Margarita</creatorcontrib><creatorcontrib>Sundkvist, Jan-Eric</creatorcontrib><creatorcontrib>Dopson, Mark</creatorcontrib><title>Low temperature, autotrophic microbial denitrification using thiosulfate or thiocyanate as electron donor</title><title>Biodegradation (Dordrecht)</title><addtitle>Biodegradation</addtitle><addtitle>Biodegradation</addtitle><description>Wastewaters generated during mining and processing of metal sulfide ores are often acidic (pH &lt; 3) and can contain significant concentrations of nitrate, nitrite, and ammonium from nitrogen based explosives. In addition, wastewaters from sulfide ore treatment plants and tailings ponds typically contain large amounts of inorganic sulfur compounds, such as thiosulfate and tetrathionate. Release of these wastewaters can lead to environmental acidification as well as an increase in nutrients (eutrophication) and compounds that are potentially toxic to humans and animals. Waters from cyanidation plants for gold extraction will often conjointly include toxic, sulfur containing thiocyanate. More stringent regulatory limits on the release of mining wastes containing compounds such as inorganic sulfur compounds, nitrate, and thiocyanate, along the need to increase production from sulfide mineral mining calls for low cost techniques to remove these pollutants under ambient temperatures (approximately 8 °C). In this study, we used both aerobic and anaerobic continuous cultures to successfully couple inorganic sulfur compound (i.e. thiosulfate and thiocyanate) oxidation for the removal of nitrogenous compounds under neutral to acidic pH at the low temperatures typical for boreal climates. Furthermore, the development of the respective microbial communities was identified over time by DNA sequencing, and found to contain a consortium including populations aligning within Flavobacterium , Thiobacillus , and Comamonadaceae lineages. This is the first study to remediate mining waste waters by coupling autotrophic thiocyanate oxidation to nitrate reduction at low temperatures and acidic pH by means of an identified microbial community.</description><subject>Acidic oxides</subject><subject>Acidification</subject><subject>Aerobiosis</subject><subject>Alignment</subject><subject>Ambient temperature</subject><subject>Ammonium</subject><subject>Ammonium compounds</subject><subject>Anaerobiosis</subject><subject>Aquatic Pollution</subject><subject>Autotrophic Processes - drug effects</subject><subject>Biodegradation, Environmental - drug effects</subject><subject>Biomedical and Life Sciences</subject><subject>Bioreactors - microbiology</subject><subject>Bioremediation</subject><subject>Climate</subject><subject>Cold Temperature</subject><subject>Consortia</subject><subject>Cultures</subject><subject>Cyanidation</subject><subject>Denitrification</subject><subject>Denitrification - drug effects</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA sequences</subject><subject>DNA sequencing</subject><subject>Electrons</subject><subject>Ethylenediaminetetraacetic acid</subject><subject>Eutrophication</subject><subject>Explosives</subject><subject>Geochemistry</subject><subject>Gold</subject><subject>Heavy metals</subject><subject>Hydrogen-Ion Concentration</subject><subject>Identification</subject><subject>Life Sciences</subject><subject>Low cost</subject><subject>Low temperature</subject><subject>Microbial activity</subject><subject>Microbiology</subject><subject>Microorganisms</subject><subject>Mikrobiologi</subject><subject>Mine tailings</subject><subject>Mine wastes</subject><subject>Mineral industry</subject><subject>Mineral nutrients</subject><subject>Minerals</subject><subject>Mining</subject><subject>Mining industry</subject><subject>Nitrate reduction</subject><subject>Nitrites</subject><subject>Nitrogen</subject><subject>Nitrogen compounds</subject><subject>Nucleotide sequencing</subject><subject>Nutrients</subject><subject>Ores</subject><subject>Original Paper</subject><subject>Oxidation</subject><subject>Phylogeny</subject><subject>Plant extracts</subject><subject>Pollutants</subject><subject>Ponds</subject><subject>Populations</subject><subject>Reduction (metal working)</subject><subject>Sequencing</subject><subject>Soil Science &amp; Conservation</subject><subject>Sulfides</subject><subject>Sulfur</subject><subject>Sulfur compounds</subject><subject>Sulphides</subject><subject>Temperature effects</subject><subject>Terrestrial Pollution</subject><subject>Tetrathionate</subject><subject>Thiocyanates - pharmacology</subject><subject>Thiosulfate</subject><subject>Thiosulfates - pharmacology</subject><subject>Waste Management/Waste Technology</subject><subject>Waste Water Technology</subject><subject>Wastes</subject><subject>Wastewater</subject><subject>Water Management</subject><subject>Water Pollution Control</subject><subject>Water treatment</subject><issn>0923-9820</issn><issn>1572-9729</issn><issn>1572-9729</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1UU1v1DAUtBCILoUfwAVF4toU2_FHfEFaFQpIK3EBrpbXec66ytqL7VD13-Ntlqo9IB_s8ZsZvfcGobcEXxKM5YdMMO9oi4lslVSilc_QinBJK6LqOVphRbtW9RSfoVc532CMlcT0JTqjPZf1JVbIb-JtU2B_gGTKnOCiMXOJJcXDzttm722KW2-mZoDgS_LOW1N8DM2cfRibsvMxz5MzBZqY7qG9M-EITW5gAludQjPEENNr9MKZKcOb032Ofl5__nH1td18__Ltar1prSC0tB2nPXW2A2A9YwxTogTprBWM1O5rhSk3ME44V4NwW8uxk0xhgN44KQx05-hi8c23cJi3-pD83qQ7HY3Xn_yvtY5p1FOYtWASs0r_uNArdw-DhVCSmZ6onlaC3-kx_tGcYyx6UQ3enwxS_D1DLvomzinUETVRRIgO95xW1uXCGs0E2gdXd2xsPQPUJccAztf_tSSUKtERXAVkEdQEck7gHloiWB_T10v6uqavj-lrWTXvHs_yoPgXdyXQ025qKYyQHvX6X9e_ODC9WQ</recordid><startdate>20170801</startdate><enddate>20170801</enddate><creator>Broman, Elias</creator><creator>Jawad, Abbtesaim</creator><creator>Wu, Xiaofen</creator><creator>Christel, Stephan</creator><creator>Ni, Gaofeng</creator><creator>Lopez-Fernandez, Margarita</creator><creator>Sundkvist, Jan-Eric</creator><creator>Dopson, Mark</creator><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7ST</scope><scope>7T7</scope><scope>7UA</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H97</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>SOI</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AGRUY</scope><scope>AOWAS</scope><scope>D8T</scope><scope>D92</scope><scope>ZZAVC</scope></search><sort><creationdate>20170801</creationdate><title>Low temperature, autotrophic microbial denitrification using thiosulfate or thiocyanate as electron donor</title><author>Broman, Elias ; Jawad, Abbtesaim ; Wu, Xiaofen ; Christel, Stephan ; Ni, Gaofeng ; Lopez-Fernandez, Margarita ; Sundkvist, Jan-Eric ; Dopson, Mark</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c612t-35282fc3ee484440219613cc6410972fc49fd451559d6fbc50f7490ee8af76ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Acidic oxides</topic><topic>Acidification</topic><topic>Aerobiosis</topic><topic>Alignment</topic><topic>Ambient temperature</topic><topic>Ammonium</topic><topic>Ammonium compounds</topic><topic>Anaerobiosis</topic><topic>Aquatic Pollution</topic><topic>Autotrophic Processes - drug effects</topic><topic>Biodegradation, Environmental - drug effects</topic><topic>Biomedical and Life Sciences</topic><topic>Bioreactors - microbiology</topic><topic>Bioremediation</topic><topic>Climate</topic><topic>Cold Temperature</topic><topic>Consortia</topic><topic>Cultures</topic><topic>Cyanidation</topic><topic>Denitrification</topic><topic>Denitrification - drug effects</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA sequences</topic><topic>DNA sequencing</topic><topic>Electrons</topic><topic>Ethylenediaminetetraacetic acid</topic><topic>Eutrophication</topic><topic>Explosives</topic><topic>Geochemistry</topic><topic>Gold</topic><topic>Heavy metals</topic><topic>Hydrogen-Ion Concentration</topic><topic>Identification</topic><topic>Life Sciences</topic><topic>Low cost</topic><topic>Low temperature</topic><topic>Microbial activity</topic><topic>Microbiology</topic><topic>Microorganisms</topic><topic>Mikrobiologi</topic><topic>Mine tailings</topic><topic>Mine wastes</topic><topic>Mineral industry</topic><topic>Mineral nutrients</topic><topic>Minerals</topic><topic>Mining</topic><topic>Mining industry</topic><topic>Nitrate reduction</topic><topic>Nitrites</topic><topic>Nitrogen</topic><topic>Nitrogen compounds</topic><topic>Nucleotide sequencing</topic><topic>Nutrients</topic><topic>Ores</topic><topic>Original Paper</topic><topic>Oxidation</topic><topic>Phylogeny</topic><topic>Plant extracts</topic><topic>Pollutants</topic><topic>Ponds</topic><topic>Populations</topic><topic>Reduction (metal working)</topic><topic>Sequencing</topic><topic>Soil Science &amp; Conservation</topic><topic>Sulfides</topic><topic>Sulfur</topic><topic>Sulfur compounds</topic><topic>Sulphides</topic><topic>Temperature effects</topic><topic>Terrestrial Pollution</topic><topic>Tetrathionate</topic><topic>Thiocyanates - pharmacology</topic><topic>Thiosulfate</topic><topic>Thiosulfates - pharmacology</topic><topic>Waste Management/Waste Technology</topic><topic>Waste Water Technology</topic><topic>Wastes</topic><topic>Wastewater</topic><topic>Water Management</topic><topic>Water Pollution Control</topic><topic>Water treatment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Broman, Elias</creatorcontrib><creatorcontrib>Jawad, Abbtesaim</creatorcontrib><creatorcontrib>Wu, Xiaofen</creatorcontrib><creatorcontrib>Christel, Stephan</creatorcontrib><creatorcontrib>Ni, Gaofeng</creatorcontrib><creatorcontrib>Lopez-Fernandez, Margarita</creatorcontrib><creatorcontrib>Sundkvist, Jan-Eric</creatorcontrib><creatorcontrib>Dopson, Mark</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Water Resources Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SWEPUB Linnéuniversitetet full text</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Linnéuniversitetet</collection><collection>SwePub Articles full text</collection><jtitle>Biodegradation (Dordrecht)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Broman, Elias</au><au>Jawad, Abbtesaim</au><au>Wu, Xiaofen</au><au>Christel, Stephan</au><au>Ni, Gaofeng</au><au>Lopez-Fernandez, Margarita</au><au>Sundkvist, Jan-Eric</au><au>Dopson, Mark</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low temperature, autotrophic microbial denitrification using thiosulfate or thiocyanate as electron donor</atitle><jtitle>Biodegradation (Dordrecht)</jtitle><stitle>Biodegradation</stitle><addtitle>Biodegradation</addtitle><date>2017-08-01</date><risdate>2017</risdate><volume>28</volume><issue>4</issue><spage>287</spage><epage>301</epage><pages>287-301</pages><issn>0923-9820</issn><issn>1572-9729</issn><eissn>1572-9729</eissn><abstract>Wastewaters generated during mining and processing of metal sulfide ores are often acidic (pH &lt; 3) and can contain significant concentrations of nitrate, nitrite, and ammonium from nitrogen based explosives. In addition, wastewaters from sulfide ore treatment plants and tailings ponds typically contain large amounts of inorganic sulfur compounds, such as thiosulfate and tetrathionate. Release of these wastewaters can lead to environmental acidification as well as an increase in nutrients (eutrophication) and compounds that are potentially toxic to humans and animals. Waters from cyanidation plants for gold extraction will often conjointly include toxic, sulfur containing thiocyanate. More stringent regulatory limits on the release of mining wastes containing compounds such as inorganic sulfur compounds, nitrate, and thiocyanate, along the need to increase production from sulfide mineral mining calls for low cost techniques to remove these pollutants under ambient temperatures (approximately 8 °C). In this study, we used both aerobic and anaerobic continuous cultures to successfully couple inorganic sulfur compound (i.e. thiosulfate and thiocyanate) oxidation for the removal of nitrogenous compounds under neutral to acidic pH at the low temperatures typical for boreal climates. Furthermore, the development of the respective microbial communities was identified over time by DNA sequencing, and found to contain a consortium including populations aligning within Flavobacterium , Thiobacillus , and Comamonadaceae lineages. This is the first study to remediate mining waste waters by coupling autotrophic thiocyanate oxidation to nitrate reduction at low temperatures and acidic pH by means of an identified microbial community.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>28577026</pmid><doi>10.1007/s10532-017-9796-7</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0923-9820
ispartof Biodegradation (Dordrecht), 2017-08, Vol.28 (4), p.287-301
issn 0923-9820
1572-9729
1572-9729
language eng
recordid cdi_swepub_primary_oai_DiVA_org_lnu_64704
source Springer Nature
subjects Acidic oxides
Acidification
Aerobiosis
Alignment
Ambient temperature
Ammonium
Ammonium compounds
Anaerobiosis
Aquatic Pollution
Autotrophic Processes - drug effects
Biodegradation, Environmental - drug effects
Biomedical and Life Sciences
Bioreactors - microbiology
Bioremediation
Climate
Cold Temperature
Consortia
Cultures
Cyanidation
Denitrification
Denitrification - drug effects
Deoxyribonucleic acid
DNA
DNA sequences
DNA sequencing
Electrons
Ethylenediaminetetraacetic acid
Eutrophication
Explosives
Geochemistry
Gold
Heavy metals
Hydrogen-Ion Concentration
Identification
Life Sciences
Low cost
Low temperature
Microbial activity
Microbiology
Microorganisms
Mikrobiologi
Mine tailings
Mine wastes
Mineral industry
Mineral nutrients
Minerals
Mining
Mining industry
Nitrate reduction
Nitrites
Nitrogen
Nitrogen compounds
Nucleotide sequencing
Nutrients
Ores
Original Paper
Oxidation
Phylogeny
Plant extracts
Pollutants
Ponds
Populations
Reduction (metal working)
Sequencing
Soil Science & Conservation
Sulfides
Sulfur
Sulfur compounds
Sulphides
Temperature effects
Terrestrial Pollution
Tetrathionate
Thiocyanates - pharmacology
Thiosulfate
Thiosulfates - pharmacology
Waste Management/Waste Technology
Waste Water Technology
Wastes
Wastewater
Water Management
Water Pollution Control
Water treatment
title Low temperature, autotrophic microbial denitrification using thiosulfate or thiocyanate as electron donor
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T13%3A52%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low%20temperature,%20autotrophic%20microbial%20denitrification%20using%20thiosulfate%20or%20thiocyanate%20as%20electron%20donor&rft.jtitle=Biodegradation%20(Dordrecht)&rft.au=Broman,%20Elias&rft.date=2017-08-01&rft.volume=28&rft.issue=4&rft.spage=287&rft.epage=301&rft.pages=287-301&rft.issn=0923-9820&rft.eissn=1572-9729&rft_id=info:doi/10.1007/s10532-017-9796-7&rft_dat=%3Cgale_swepu%3EA712296310%3C/gale_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c612t-35282fc3ee484440219613cc6410972fc49fd451559d6fbc50f7490ee8af76ae3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1916630852&rft_id=info:pmid/28577026&rft_galeid=A712296310&rfr_iscdi=true