Loading…
Low temperature, autotrophic microbial denitrification using thiosulfate or thiocyanate as electron donor
Wastewaters generated during mining and processing of metal sulfide ores are often acidic (pH
Saved in:
Published in: | Biodegradation (Dordrecht) 2017-08, Vol.28 (4), p.287-301 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c612t-35282fc3ee484440219613cc6410972fc49fd451559d6fbc50f7490ee8af76ae3 |
---|---|
cites | cdi_FETCH-LOGICAL-c612t-35282fc3ee484440219613cc6410972fc49fd451559d6fbc50f7490ee8af76ae3 |
container_end_page | 301 |
container_issue | 4 |
container_start_page | 287 |
container_title | Biodegradation (Dordrecht) |
container_volume | 28 |
creator | Broman, Elias Jawad, Abbtesaim Wu, Xiaofen Christel, Stephan Ni, Gaofeng Lopez-Fernandez, Margarita Sundkvist, Jan-Eric Dopson, Mark |
description | Wastewaters generated during mining and processing of metal sulfide ores are often acidic (pH |
doi_str_mv | 10.1007/s10532-017-9796-7 |
format | article |
fullrecord | <record><control><sourceid>gale_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_lnu_64704</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A712296310</galeid><sourcerecordid>A712296310</sourcerecordid><originalsourceid>FETCH-LOGICAL-c612t-35282fc3ee484440219613cc6410972fc49fd451559d6fbc50f7490ee8af76ae3</originalsourceid><addsrcrecordid>eNp1UU1v1DAUtBCILoUfwAVF4toU2_FHfEFaFQpIK3EBrpbXec66ytqL7VD13-Ntlqo9IB_s8ZsZvfcGobcEXxKM5YdMMO9oi4lslVSilc_QinBJK6LqOVphRbtW9RSfoVc532CMlcT0JTqjPZf1JVbIb-JtU2B_gGTKnOCiMXOJJcXDzttm722KW2-mZoDgS_LOW1N8DM2cfRibsvMxz5MzBZqY7qG9M-EITW5gAludQjPEENNr9MKZKcOb032Ofl5__nH1td18__Ltar1prSC0tB2nPXW2A2A9YwxTogTprBWM1O5rhSk3ME44V4NwW8uxk0xhgN44KQx05-hi8c23cJi3-pD83qQ7HY3Xn_yvtY5p1FOYtWASs0r_uNArdw-DhVCSmZ6onlaC3-kx_tGcYyx6UQ3enwxS_D1DLvomzinUETVRRIgO95xW1uXCGs0E2gdXd2xsPQPUJccAztf_tSSUKtERXAVkEdQEck7gHloiWB_T10v6uqavj-lrWTXvHs_yoPgXdyXQ025qKYyQHvX6X9e_ODC9WQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1916630852</pqid></control><display><type>article</type><title>Low temperature, autotrophic microbial denitrification using thiosulfate or thiocyanate as electron donor</title><source>Springer Nature</source><creator>Broman, Elias ; Jawad, Abbtesaim ; Wu, Xiaofen ; Christel, Stephan ; Ni, Gaofeng ; Lopez-Fernandez, Margarita ; Sundkvist, Jan-Eric ; Dopson, Mark</creator><creatorcontrib>Broman, Elias ; Jawad, Abbtesaim ; Wu, Xiaofen ; Christel, Stephan ; Ni, Gaofeng ; Lopez-Fernandez, Margarita ; Sundkvist, Jan-Eric ; Dopson, Mark</creatorcontrib><description>Wastewaters generated during mining and processing of metal sulfide ores are often acidic (pH < 3) and can contain significant concentrations of nitrate, nitrite, and ammonium from nitrogen based explosives. In addition, wastewaters from sulfide ore treatment plants and tailings ponds typically contain large amounts of inorganic sulfur compounds, such as thiosulfate and tetrathionate. Release of these wastewaters can lead to environmental acidification as well as an increase in nutrients (eutrophication) and compounds that are potentially toxic to humans and animals. Waters from cyanidation plants for gold extraction will often conjointly include toxic, sulfur containing thiocyanate. More stringent regulatory limits on the release of mining wastes containing compounds such as inorganic sulfur compounds, nitrate, and thiocyanate, along the need to increase production from sulfide mineral mining calls for low cost techniques to remove these pollutants under ambient temperatures (approximately 8 °C). In this study, we used both aerobic and anaerobic continuous cultures to successfully couple inorganic sulfur compound (i.e. thiosulfate and thiocyanate) oxidation for the removal of nitrogenous compounds under neutral to acidic pH at the low temperatures typical for boreal climates. Furthermore, the development of the respective microbial communities was identified over time by DNA sequencing, and found to contain a consortium including populations aligning within
Flavobacterium
,
Thiobacillus
, and
Comamonadaceae
lineages. This is the first study to remediate mining waste waters by coupling autotrophic thiocyanate oxidation to nitrate reduction at low temperatures and acidic pH by means of an identified microbial community.</description><identifier>ISSN: 0923-9820</identifier><identifier>ISSN: 1572-9729</identifier><identifier>EISSN: 1572-9729</identifier><identifier>DOI: 10.1007/s10532-017-9796-7</identifier><identifier>PMID: 28577026</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Acidic oxides ; Acidification ; Aerobiosis ; Alignment ; Ambient temperature ; Ammonium ; Ammonium compounds ; Anaerobiosis ; Aquatic Pollution ; Autotrophic Processes - drug effects ; Biodegradation, Environmental - drug effects ; Biomedical and Life Sciences ; Bioreactors - microbiology ; Bioremediation ; Climate ; Cold Temperature ; Consortia ; Cultures ; Cyanidation ; Denitrification ; Denitrification - drug effects ; Deoxyribonucleic acid ; DNA ; DNA sequences ; DNA sequencing ; Electrons ; Ethylenediaminetetraacetic acid ; Eutrophication ; Explosives ; Geochemistry ; Gold ; Heavy metals ; Hydrogen-Ion Concentration ; Identification ; Life Sciences ; Low cost ; Low temperature ; Microbial activity ; Microbiology ; Microorganisms ; Mikrobiologi ; Mine tailings ; Mine wastes ; Mineral industry ; Mineral nutrients ; Minerals ; Mining ; Mining industry ; Nitrate reduction ; Nitrites ; Nitrogen ; Nitrogen compounds ; Nucleotide sequencing ; Nutrients ; Ores ; Original Paper ; Oxidation ; Phylogeny ; Plant extracts ; Pollutants ; Ponds ; Populations ; Reduction (metal working) ; Sequencing ; Soil Science & Conservation ; Sulfides ; Sulfur ; Sulfur compounds ; Sulphides ; Temperature effects ; Terrestrial Pollution ; Tetrathionate ; Thiocyanates - pharmacology ; Thiosulfate ; Thiosulfates - pharmacology ; Waste Management/Waste Technology ; Waste Water Technology ; Wastes ; Wastewater ; Water Management ; Water Pollution Control ; Water treatment</subject><ispartof>Biodegradation (Dordrecht), 2017-08, Vol.28 (4), p.287-301</ispartof><rights>The Author(s) 2017</rights><rights>COPYRIGHT 2017 Springer</rights><rights>Biodegradation is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c612t-35282fc3ee484440219613cc6410972fc49fd451559d6fbc50f7490ee8af76ae3</citedby><cites>FETCH-LOGICAL-c612t-35282fc3ee484440219613cc6410972fc49fd451559d6fbc50f7490ee8af76ae3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28577026$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-64704$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Broman, Elias</creatorcontrib><creatorcontrib>Jawad, Abbtesaim</creatorcontrib><creatorcontrib>Wu, Xiaofen</creatorcontrib><creatorcontrib>Christel, Stephan</creatorcontrib><creatorcontrib>Ni, Gaofeng</creatorcontrib><creatorcontrib>Lopez-Fernandez, Margarita</creatorcontrib><creatorcontrib>Sundkvist, Jan-Eric</creatorcontrib><creatorcontrib>Dopson, Mark</creatorcontrib><title>Low temperature, autotrophic microbial denitrification using thiosulfate or thiocyanate as electron donor</title><title>Biodegradation (Dordrecht)</title><addtitle>Biodegradation</addtitle><addtitle>Biodegradation</addtitle><description>Wastewaters generated during mining and processing of metal sulfide ores are often acidic (pH < 3) and can contain significant concentrations of nitrate, nitrite, and ammonium from nitrogen based explosives. In addition, wastewaters from sulfide ore treatment plants and tailings ponds typically contain large amounts of inorganic sulfur compounds, such as thiosulfate and tetrathionate. Release of these wastewaters can lead to environmental acidification as well as an increase in nutrients (eutrophication) and compounds that are potentially toxic to humans and animals. Waters from cyanidation plants for gold extraction will often conjointly include toxic, sulfur containing thiocyanate. More stringent regulatory limits on the release of mining wastes containing compounds such as inorganic sulfur compounds, nitrate, and thiocyanate, along the need to increase production from sulfide mineral mining calls for low cost techniques to remove these pollutants under ambient temperatures (approximately 8 °C). In this study, we used both aerobic and anaerobic continuous cultures to successfully couple inorganic sulfur compound (i.e. thiosulfate and thiocyanate) oxidation for the removal of nitrogenous compounds under neutral to acidic pH at the low temperatures typical for boreal climates. Furthermore, the development of the respective microbial communities was identified over time by DNA sequencing, and found to contain a consortium including populations aligning within
Flavobacterium
,
Thiobacillus
, and
Comamonadaceae
lineages. This is the first study to remediate mining waste waters by coupling autotrophic thiocyanate oxidation to nitrate reduction at low temperatures and acidic pH by means of an identified microbial community.</description><subject>Acidic oxides</subject><subject>Acidification</subject><subject>Aerobiosis</subject><subject>Alignment</subject><subject>Ambient temperature</subject><subject>Ammonium</subject><subject>Ammonium compounds</subject><subject>Anaerobiosis</subject><subject>Aquatic Pollution</subject><subject>Autotrophic Processes - drug effects</subject><subject>Biodegradation, Environmental - drug effects</subject><subject>Biomedical and Life Sciences</subject><subject>Bioreactors - microbiology</subject><subject>Bioremediation</subject><subject>Climate</subject><subject>Cold Temperature</subject><subject>Consortia</subject><subject>Cultures</subject><subject>Cyanidation</subject><subject>Denitrification</subject><subject>Denitrification - drug effects</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA sequences</subject><subject>DNA sequencing</subject><subject>Electrons</subject><subject>Ethylenediaminetetraacetic acid</subject><subject>Eutrophication</subject><subject>Explosives</subject><subject>Geochemistry</subject><subject>Gold</subject><subject>Heavy metals</subject><subject>Hydrogen-Ion Concentration</subject><subject>Identification</subject><subject>Life Sciences</subject><subject>Low cost</subject><subject>Low temperature</subject><subject>Microbial activity</subject><subject>Microbiology</subject><subject>Microorganisms</subject><subject>Mikrobiologi</subject><subject>Mine tailings</subject><subject>Mine wastes</subject><subject>Mineral industry</subject><subject>Mineral nutrients</subject><subject>Minerals</subject><subject>Mining</subject><subject>Mining industry</subject><subject>Nitrate reduction</subject><subject>Nitrites</subject><subject>Nitrogen</subject><subject>Nitrogen compounds</subject><subject>Nucleotide sequencing</subject><subject>Nutrients</subject><subject>Ores</subject><subject>Original Paper</subject><subject>Oxidation</subject><subject>Phylogeny</subject><subject>Plant extracts</subject><subject>Pollutants</subject><subject>Ponds</subject><subject>Populations</subject><subject>Reduction (metal working)</subject><subject>Sequencing</subject><subject>Soil Science & Conservation</subject><subject>Sulfides</subject><subject>Sulfur</subject><subject>Sulfur compounds</subject><subject>Sulphides</subject><subject>Temperature effects</subject><subject>Terrestrial Pollution</subject><subject>Tetrathionate</subject><subject>Thiocyanates - pharmacology</subject><subject>Thiosulfate</subject><subject>Thiosulfates - pharmacology</subject><subject>Waste Management/Waste Technology</subject><subject>Waste Water Technology</subject><subject>Wastes</subject><subject>Wastewater</subject><subject>Water Management</subject><subject>Water Pollution Control</subject><subject>Water treatment</subject><issn>0923-9820</issn><issn>1572-9729</issn><issn>1572-9729</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1UU1v1DAUtBCILoUfwAVF4toU2_FHfEFaFQpIK3EBrpbXec66ytqL7VD13-Ntlqo9IB_s8ZsZvfcGobcEXxKM5YdMMO9oi4lslVSilc_QinBJK6LqOVphRbtW9RSfoVc532CMlcT0JTqjPZf1JVbIb-JtU2B_gGTKnOCiMXOJJcXDzttm722KW2-mZoDgS_LOW1N8DM2cfRibsvMxz5MzBZqY7qG9M-EITW5gAludQjPEENNr9MKZKcOb032Ofl5__nH1td18__Ltar1prSC0tB2nPXW2A2A9YwxTogTprBWM1O5rhSk3ME44V4NwW8uxk0xhgN44KQx05-hi8c23cJi3-pD83qQ7HY3Xn_yvtY5p1FOYtWASs0r_uNArdw-DhVCSmZ6onlaC3-kx_tGcYyx6UQ3enwxS_D1DLvomzinUETVRRIgO95xW1uXCGs0E2gdXd2xsPQPUJccAztf_tSSUKtERXAVkEdQEck7gHloiWB_T10v6uqavj-lrWTXvHs_yoPgXdyXQ025qKYyQHvX6X9e_ODC9WQ</recordid><startdate>20170801</startdate><enddate>20170801</enddate><creator>Broman, Elias</creator><creator>Jawad, Abbtesaim</creator><creator>Wu, Xiaofen</creator><creator>Christel, Stephan</creator><creator>Ni, Gaofeng</creator><creator>Lopez-Fernandez, Margarita</creator><creator>Sundkvist, Jan-Eric</creator><creator>Dopson, Mark</creator><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7ST</scope><scope>7T7</scope><scope>7UA</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H97</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>SOI</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AGRUY</scope><scope>AOWAS</scope><scope>D8T</scope><scope>D92</scope><scope>ZZAVC</scope></search><sort><creationdate>20170801</creationdate><title>Low temperature, autotrophic microbial denitrification using thiosulfate or thiocyanate as electron donor</title><author>Broman, Elias ; Jawad, Abbtesaim ; Wu, Xiaofen ; Christel, Stephan ; Ni, Gaofeng ; Lopez-Fernandez, Margarita ; Sundkvist, Jan-Eric ; Dopson, Mark</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c612t-35282fc3ee484440219613cc6410972fc49fd451559d6fbc50f7490ee8af76ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Acidic oxides</topic><topic>Acidification</topic><topic>Aerobiosis</topic><topic>Alignment</topic><topic>Ambient temperature</topic><topic>Ammonium</topic><topic>Ammonium compounds</topic><topic>Anaerobiosis</topic><topic>Aquatic Pollution</topic><topic>Autotrophic Processes - drug effects</topic><topic>Biodegradation, Environmental - drug effects</topic><topic>Biomedical and Life Sciences</topic><topic>Bioreactors - microbiology</topic><topic>Bioremediation</topic><topic>Climate</topic><topic>Cold Temperature</topic><topic>Consortia</topic><topic>Cultures</topic><topic>Cyanidation</topic><topic>Denitrification</topic><topic>Denitrification - drug effects</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA sequences</topic><topic>DNA sequencing</topic><topic>Electrons</topic><topic>Ethylenediaminetetraacetic acid</topic><topic>Eutrophication</topic><topic>Explosives</topic><topic>Geochemistry</topic><topic>Gold</topic><topic>Heavy metals</topic><topic>Hydrogen-Ion Concentration</topic><topic>Identification</topic><topic>Life Sciences</topic><topic>Low cost</topic><topic>Low temperature</topic><topic>Microbial activity</topic><topic>Microbiology</topic><topic>Microorganisms</topic><topic>Mikrobiologi</topic><topic>Mine tailings</topic><topic>Mine wastes</topic><topic>Mineral industry</topic><topic>Mineral nutrients</topic><topic>Minerals</topic><topic>Mining</topic><topic>Mining industry</topic><topic>Nitrate reduction</topic><topic>Nitrites</topic><topic>Nitrogen</topic><topic>Nitrogen compounds</topic><topic>Nucleotide sequencing</topic><topic>Nutrients</topic><topic>Ores</topic><topic>Original Paper</topic><topic>Oxidation</topic><topic>Phylogeny</topic><topic>Plant extracts</topic><topic>Pollutants</topic><topic>Ponds</topic><topic>Populations</topic><topic>Reduction (metal working)</topic><topic>Sequencing</topic><topic>Soil Science & Conservation</topic><topic>Sulfides</topic><topic>Sulfur</topic><topic>Sulfur compounds</topic><topic>Sulphides</topic><topic>Temperature effects</topic><topic>Terrestrial Pollution</topic><topic>Tetrathionate</topic><topic>Thiocyanates - pharmacology</topic><topic>Thiosulfate</topic><topic>Thiosulfates - pharmacology</topic><topic>Waste Management/Waste Technology</topic><topic>Waste Water Technology</topic><topic>Wastes</topic><topic>Wastewater</topic><topic>Water Management</topic><topic>Water Pollution Control</topic><topic>Water treatment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Broman, Elias</creatorcontrib><creatorcontrib>Jawad, Abbtesaim</creatorcontrib><creatorcontrib>Wu, Xiaofen</creatorcontrib><creatorcontrib>Christel, Stephan</creatorcontrib><creatorcontrib>Ni, Gaofeng</creatorcontrib><creatorcontrib>Lopez-Fernandez, Margarita</creatorcontrib><creatorcontrib>Sundkvist, Jan-Eric</creatorcontrib><creatorcontrib>Dopson, Mark</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Water Resources Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SWEPUB Linnéuniversitetet full text</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Linnéuniversitetet</collection><collection>SwePub Articles full text</collection><jtitle>Biodegradation (Dordrecht)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Broman, Elias</au><au>Jawad, Abbtesaim</au><au>Wu, Xiaofen</au><au>Christel, Stephan</au><au>Ni, Gaofeng</au><au>Lopez-Fernandez, Margarita</au><au>Sundkvist, Jan-Eric</au><au>Dopson, Mark</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low temperature, autotrophic microbial denitrification using thiosulfate or thiocyanate as electron donor</atitle><jtitle>Biodegradation (Dordrecht)</jtitle><stitle>Biodegradation</stitle><addtitle>Biodegradation</addtitle><date>2017-08-01</date><risdate>2017</risdate><volume>28</volume><issue>4</issue><spage>287</spage><epage>301</epage><pages>287-301</pages><issn>0923-9820</issn><issn>1572-9729</issn><eissn>1572-9729</eissn><abstract>Wastewaters generated during mining and processing of metal sulfide ores are often acidic (pH < 3) and can contain significant concentrations of nitrate, nitrite, and ammonium from nitrogen based explosives. In addition, wastewaters from sulfide ore treatment plants and tailings ponds typically contain large amounts of inorganic sulfur compounds, such as thiosulfate and tetrathionate. Release of these wastewaters can lead to environmental acidification as well as an increase in nutrients (eutrophication) and compounds that are potentially toxic to humans and animals. Waters from cyanidation plants for gold extraction will often conjointly include toxic, sulfur containing thiocyanate. More stringent regulatory limits on the release of mining wastes containing compounds such as inorganic sulfur compounds, nitrate, and thiocyanate, along the need to increase production from sulfide mineral mining calls for low cost techniques to remove these pollutants under ambient temperatures (approximately 8 °C). In this study, we used both aerobic and anaerobic continuous cultures to successfully couple inorganic sulfur compound (i.e. thiosulfate and thiocyanate) oxidation for the removal of nitrogenous compounds under neutral to acidic pH at the low temperatures typical for boreal climates. Furthermore, the development of the respective microbial communities was identified over time by DNA sequencing, and found to contain a consortium including populations aligning within
Flavobacterium
,
Thiobacillus
, and
Comamonadaceae
lineages. This is the first study to remediate mining waste waters by coupling autotrophic thiocyanate oxidation to nitrate reduction at low temperatures and acidic pH by means of an identified microbial community.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>28577026</pmid><doi>10.1007/s10532-017-9796-7</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0923-9820 |
ispartof | Biodegradation (Dordrecht), 2017-08, Vol.28 (4), p.287-301 |
issn | 0923-9820 1572-9729 1572-9729 |
language | eng |
recordid | cdi_swepub_primary_oai_DiVA_org_lnu_64704 |
source | Springer Nature |
subjects | Acidic oxides Acidification Aerobiosis Alignment Ambient temperature Ammonium Ammonium compounds Anaerobiosis Aquatic Pollution Autotrophic Processes - drug effects Biodegradation, Environmental - drug effects Biomedical and Life Sciences Bioreactors - microbiology Bioremediation Climate Cold Temperature Consortia Cultures Cyanidation Denitrification Denitrification - drug effects Deoxyribonucleic acid DNA DNA sequences DNA sequencing Electrons Ethylenediaminetetraacetic acid Eutrophication Explosives Geochemistry Gold Heavy metals Hydrogen-Ion Concentration Identification Life Sciences Low cost Low temperature Microbial activity Microbiology Microorganisms Mikrobiologi Mine tailings Mine wastes Mineral industry Mineral nutrients Minerals Mining Mining industry Nitrate reduction Nitrites Nitrogen Nitrogen compounds Nucleotide sequencing Nutrients Ores Original Paper Oxidation Phylogeny Plant extracts Pollutants Ponds Populations Reduction (metal working) Sequencing Soil Science & Conservation Sulfides Sulfur Sulfur compounds Sulphides Temperature effects Terrestrial Pollution Tetrathionate Thiocyanates - pharmacology Thiosulfate Thiosulfates - pharmacology Waste Management/Waste Technology Waste Water Technology Wastes Wastewater Water Management Water Pollution Control Water treatment |
title | Low temperature, autotrophic microbial denitrification using thiosulfate or thiocyanate as electron donor |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T13%3A52%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low%20temperature,%20autotrophic%20microbial%20denitrification%20using%20thiosulfate%20or%20thiocyanate%20as%20electron%20donor&rft.jtitle=Biodegradation%20(Dordrecht)&rft.au=Broman,%20Elias&rft.date=2017-08-01&rft.volume=28&rft.issue=4&rft.spage=287&rft.epage=301&rft.pages=287-301&rft.issn=0923-9820&rft.eissn=1572-9729&rft_id=info:doi/10.1007/s10532-017-9796-7&rft_dat=%3Cgale_swepu%3EA712296310%3C/gale_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c612t-35282fc3ee484440219613cc6410972fc49fd451559d6fbc50f7490ee8af76ae3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1916630852&rft_id=info:pmid/28577026&rft_galeid=A712296310&rfr_iscdi=true |