Loading…
Retrofitting with different building materials: Life-cycle primary energy implications
The energy retrofitting of existing buildings reduces the energy use in the operation phase but the use of additional materials influence the energy use in other life cycle phases of retrofitted buildings. In this study, we analyse the life cycle primary energy implications of different material alt...
Saved in:
Published in: | Energy (Oxford) 2020-02, Vol.192, p.116648, Article 116648 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c371t-16e7f6f9716188f18d7dbf60771750cf768238c50c4516d6f250da3523c0f5913 |
---|---|
cites | cdi_FETCH-LOGICAL-c371t-16e7f6f9716188f18d7dbf60771750cf768238c50c4516d6f250da3523c0f5913 |
container_end_page | |
container_issue | |
container_start_page | 116648 |
container_title | Energy (Oxford) |
container_volume | 192 |
creator | Piccardo, Chiara Dodoo, Ambrose Gustavsson, Leif Tettey, Uniben |
description | The energy retrofitting of existing buildings reduces the energy use in the operation phase but the use of additional materials influence the energy use in other life cycle phases of retrofitted buildings. In this study, we analyse the life cycle primary energy implications of different material alternatives when retrofitting an existing building to meet high energy performance levels. We design retrofitting options assuming the highest and lowest value of final energy use, respectively, for passive house standards applicable in Sweden. The retrofitting options include the thermal improvement of the building envelope. We calculate the primary energy use in the operation phase (operation primary energy), as well as in production, maintenance and end-of-life phases (non-operation primary energy). Our results show that the non-operation primary energy use can vary significantly depending on the choice of materials for thermal insulation, cladding systems and windows. Although the operation energy use decreases by 63–78%, we find that the non-operation energy for building retrofitting accounts for up to 21% of the operation energy saving, depending on the passive house performance level and the material alternative. A careful selection of building materials can reduce the non-operation primary energy by up to 40%, especially when using wood-based materials.
•Life-cycle primary energy use when retrofitting an existing building is analysed.•Life-cycle primary energy use depends on the passive house standard to achieve.•Materials used in energy-retrofitted buildings affect net primary energy savings. |
doi_str_mv | 10.1016/j.energy.2019.116648 |
format | article |
fullrecord | <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_lnu_92243</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360544219323436</els_id><sourcerecordid>2371766247</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-16e7f6f9716188f18d7dbf60771750cf768238c50c4516d6f250da3523c0f5913</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-Aw8Fr7YmaZukHoRl_QsLguheQzedrFO67ZqkLvvt7VLx6GmG4Tdv3jxCLhlNGGXipk6gBbfeJ5yyImFMiEwdkQlTMo2FVPkxmdBU0DjPMn5KzryvKaW5KooJWb5BcJ3FELBdRzsMn1GF1oKDNkSrHpvqMN-UARyWjb-NFmghNnvTQLR1uCndPhqPR7jZNmjKgF3rz8mJHXC4-K1T8vH48D5_jhevTy_z2SI2qWQhZgKkFbaQTDClLFOVrFZWUCmZzKmxUiieKjO0Wc5EJSzPaVWmOU8NtXnB0im5HnX9Drb9Sv9a0l2J-h6XM925tW7aXhecZ-mAX4341nVfPfig66537eBQ88GQFIJncqCykTKu896B_ZNlVB8C17Uef9aHwPUY-LB2N67B8PA3gtPeILQGKnRggq46_F_gB9nAi7c</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2371766247</pqid></control><display><type>article</type><title>Retrofitting with different building materials: Life-cycle primary energy implications</title><source>Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)</source><creator>Piccardo, Chiara ; Dodoo, Ambrose ; Gustavsson, Leif ; Tettey, Uniben</creator><creatorcontrib>Piccardo, Chiara ; Dodoo, Ambrose ; Gustavsson, Leif ; Tettey, Uniben</creatorcontrib><description>The energy retrofitting of existing buildings reduces the energy use in the operation phase but the use of additional materials influence the energy use in other life cycle phases of retrofitted buildings. In this study, we analyse the life cycle primary energy implications of different material alternatives when retrofitting an existing building to meet high energy performance levels. We design retrofitting options assuming the highest and lowest value of final energy use, respectively, for passive house standards applicable in Sweden. The retrofitting options include the thermal improvement of the building envelope. We calculate the primary energy use in the operation phase (operation primary energy), as well as in production, maintenance and end-of-life phases (non-operation primary energy). Our results show that the non-operation primary energy use can vary significantly depending on the choice of materials for thermal insulation, cladding systems and windows. Although the operation energy use decreases by 63–78%, we find that the non-operation energy for building retrofitting accounts for up to 21% of the operation energy saving, depending on the passive house performance level and the material alternative. A careful selection of building materials can reduce the non-operation primary energy by up to 40%, especially when using wood-based materials.
•Life-cycle primary energy use when retrofitting an existing building is analysed.•Life-cycle primary energy use depends on the passive house standard to achieve.•Materials used in energy-retrofitted buildings affect net primary energy savings.</description><identifier>ISSN: 0360-5442</identifier><identifier>ISSN: 1873-6785</identifier><identifier>EISSN: 1873-6785</identifier><identifier>DOI: 10.1016/j.energy.2019.116648</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Alternative energy sources ; Building envelopes ; Building materials ; Building retrofit ; Buildings ; Byggteknik ; Civil engineering ; Construction materials ; Energy ; Energy conservation ; Energy consumption ; Hållbar byggd miljö ; Life cycle ; Life cycle analysis ; Life cycles ; Materials selection ; Passive house ; Primary energy use ; Retrofitting ; Sustainable Built Environment ; Thermal insulation</subject><ispartof>Energy (Oxford), 2020-02, Vol.192, p.116648, Article 116648</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Feb 1, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-16e7f6f9716188f18d7dbf60771750cf768238c50c4516d6f250da3523c0f5913</citedby><cites>FETCH-LOGICAL-c371t-16e7f6f9716188f18d7dbf60771750cf768238c50c4516d6f250da3523c0f5913</cites><orcidid>0000-0003-2111-806X ; 0000-0002-5220-3454 ; 0000-0002-7944-6739</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-92243$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Piccardo, Chiara</creatorcontrib><creatorcontrib>Dodoo, Ambrose</creatorcontrib><creatorcontrib>Gustavsson, Leif</creatorcontrib><creatorcontrib>Tettey, Uniben</creatorcontrib><title>Retrofitting with different building materials: Life-cycle primary energy implications</title><title>Energy (Oxford)</title><description>The energy retrofitting of existing buildings reduces the energy use in the operation phase but the use of additional materials influence the energy use in other life cycle phases of retrofitted buildings. In this study, we analyse the life cycle primary energy implications of different material alternatives when retrofitting an existing building to meet high energy performance levels. We design retrofitting options assuming the highest and lowest value of final energy use, respectively, for passive house standards applicable in Sweden. The retrofitting options include the thermal improvement of the building envelope. We calculate the primary energy use in the operation phase (operation primary energy), as well as in production, maintenance and end-of-life phases (non-operation primary energy). Our results show that the non-operation primary energy use can vary significantly depending on the choice of materials for thermal insulation, cladding systems and windows. Although the operation energy use decreases by 63–78%, we find that the non-operation energy for building retrofitting accounts for up to 21% of the operation energy saving, depending on the passive house performance level and the material alternative. A careful selection of building materials can reduce the non-operation primary energy by up to 40%, especially when using wood-based materials.
•Life-cycle primary energy use when retrofitting an existing building is analysed.•Life-cycle primary energy use depends on the passive house standard to achieve.•Materials used in energy-retrofitted buildings affect net primary energy savings.</description><subject>Alternative energy sources</subject><subject>Building envelopes</subject><subject>Building materials</subject><subject>Building retrofit</subject><subject>Buildings</subject><subject>Byggteknik</subject><subject>Civil engineering</subject><subject>Construction materials</subject><subject>Energy</subject><subject>Energy conservation</subject><subject>Energy consumption</subject><subject>Hållbar byggd miljö</subject><subject>Life cycle</subject><subject>Life cycle analysis</subject><subject>Life cycles</subject><subject>Materials selection</subject><subject>Passive house</subject><subject>Primary energy use</subject><subject>Retrofitting</subject><subject>Sustainable Built Environment</subject><subject>Thermal insulation</subject><issn>0360-5442</issn><issn>1873-6785</issn><issn>1873-6785</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-Aw8Fr7YmaZukHoRl_QsLguheQzedrFO67ZqkLvvt7VLx6GmG4Tdv3jxCLhlNGGXipk6gBbfeJ5yyImFMiEwdkQlTMo2FVPkxmdBU0DjPMn5KzryvKaW5KooJWb5BcJ3FELBdRzsMn1GF1oKDNkSrHpvqMN-UARyWjb-NFmghNnvTQLR1uCndPhqPR7jZNmjKgF3rz8mJHXC4-K1T8vH48D5_jhevTy_z2SI2qWQhZgKkFbaQTDClLFOVrFZWUCmZzKmxUiieKjO0Wc5EJSzPaVWmOU8NtXnB0im5HnX9Drb9Sv9a0l2J-h6XM925tW7aXhecZ-mAX4341nVfPfig66537eBQ88GQFIJncqCykTKu896B_ZNlVB8C17Uef9aHwPUY-LB2N67B8PA3gtPeILQGKnRggq46_F_gB9nAi7c</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Piccardo, Chiara</creator><creator>Dodoo, Ambrose</creator><creator>Gustavsson, Leif</creator><creator>Tettey, Uniben</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D92</scope><orcidid>https://orcid.org/0000-0003-2111-806X</orcidid><orcidid>https://orcid.org/0000-0002-5220-3454</orcidid><orcidid>https://orcid.org/0000-0002-7944-6739</orcidid></search><sort><creationdate>20200201</creationdate><title>Retrofitting with different building materials: Life-cycle primary energy implications</title><author>Piccardo, Chiara ; Dodoo, Ambrose ; Gustavsson, Leif ; Tettey, Uniben</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-16e7f6f9716188f18d7dbf60771750cf768238c50c4516d6f250da3523c0f5913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alternative energy sources</topic><topic>Building envelopes</topic><topic>Building materials</topic><topic>Building retrofit</topic><topic>Buildings</topic><topic>Byggteknik</topic><topic>Civil engineering</topic><topic>Construction materials</topic><topic>Energy</topic><topic>Energy conservation</topic><topic>Energy consumption</topic><topic>Hållbar byggd miljö</topic><topic>Life cycle</topic><topic>Life cycle analysis</topic><topic>Life cycles</topic><topic>Materials selection</topic><topic>Passive house</topic><topic>Primary energy use</topic><topic>Retrofitting</topic><topic>Sustainable Built Environment</topic><topic>Thermal insulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Piccardo, Chiara</creatorcontrib><creatorcontrib>Dodoo, Ambrose</creatorcontrib><creatorcontrib>Gustavsson, Leif</creatorcontrib><creatorcontrib>Tettey, Uniben</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Linnéuniversitetet</collection><jtitle>Energy (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Piccardo, Chiara</au><au>Dodoo, Ambrose</au><au>Gustavsson, Leif</au><au>Tettey, Uniben</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Retrofitting with different building materials: Life-cycle primary energy implications</atitle><jtitle>Energy (Oxford)</jtitle><date>2020-02-01</date><risdate>2020</risdate><volume>192</volume><spage>116648</spage><pages>116648-</pages><artnum>116648</artnum><issn>0360-5442</issn><issn>1873-6785</issn><eissn>1873-6785</eissn><abstract>The energy retrofitting of existing buildings reduces the energy use in the operation phase but the use of additional materials influence the energy use in other life cycle phases of retrofitted buildings. In this study, we analyse the life cycle primary energy implications of different material alternatives when retrofitting an existing building to meet high energy performance levels. We design retrofitting options assuming the highest and lowest value of final energy use, respectively, for passive house standards applicable in Sweden. The retrofitting options include the thermal improvement of the building envelope. We calculate the primary energy use in the operation phase (operation primary energy), as well as in production, maintenance and end-of-life phases (non-operation primary energy). Our results show that the non-operation primary energy use can vary significantly depending on the choice of materials for thermal insulation, cladding systems and windows. Although the operation energy use decreases by 63–78%, we find that the non-operation energy for building retrofitting accounts for up to 21% of the operation energy saving, depending on the passive house performance level and the material alternative. A careful selection of building materials can reduce the non-operation primary energy by up to 40%, especially when using wood-based materials.
•Life-cycle primary energy use when retrofitting an existing building is analysed.•Life-cycle primary energy use depends on the passive house standard to achieve.•Materials used in energy-retrofitted buildings affect net primary energy savings.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.energy.2019.116648</doi><orcidid>https://orcid.org/0000-0003-2111-806X</orcidid><orcidid>https://orcid.org/0000-0002-5220-3454</orcidid><orcidid>https://orcid.org/0000-0002-7944-6739</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0360-5442 |
ispartof | Energy (Oxford), 2020-02, Vol.192, p.116648, Article 116648 |
issn | 0360-5442 1873-6785 1873-6785 |
language | eng |
recordid | cdi_swepub_primary_oai_DiVA_org_lnu_92243 |
source | Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list) |
subjects | Alternative energy sources Building envelopes Building materials Building retrofit Buildings Byggteknik Civil engineering Construction materials Energy Energy conservation Energy consumption Hållbar byggd miljö Life cycle Life cycle analysis Life cycles Materials selection Passive house Primary energy use Retrofitting Sustainable Built Environment Thermal insulation |
title | Retrofitting with different building materials: Life-cycle primary energy implications |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T22%3A23%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Retrofitting%20with%20different%20building%20materials:%20Life-cycle%20primary%20energy%20implications&rft.jtitle=Energy%20(Oxford)&rft.au=Piccardo,%20Chiara&rft.date=2020-02-01&rft.volume=192&rft.spage=116648&rft.pages=116648-&rft.artnum=116648&rft.issn=0360-5442&rft.eissn=1873-6785&rft_id=info:doi/10.1016/j.energy.2019.116648&rft_dat=%3Cproquest_swepu%3E2371766247%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c371t-16e7f6f9716188f18d7dbf60771750cf768238c50c4516d6f250da3523c0f5913%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2371766247&rft_id=info:pmid/&rfr_iscdi=true |