Loading…

Retrofitting with different building materials: Life-cycle primary energy implications

The energy retrofitting of existing buildings reduces the energy use in the operation phase but the use of additional materials influence the energy use in other life cycle phases of retrofitted buildings. In this study, we analyse the life cycle primary energy implications of different material alt...

Full description

Saved in:
Bibliographic Details
Published in:Energy (Oxford) 2020-02, Vol.192, p.116648, Article 116648
Main Authors: Piccardo, Chiara, Dodoo, Ambrose, Gustavsson, Leif, Tettey, Uniben
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c371t-16e7f6f9716188f18d7dbf60771750cf768238c50c4516d6f250da3523c0f5913
cites cdi_FETCH-LOGICAL-c371t-16e7f6f9716188f18d7dbf60771750cf768238c50c4516d6f250da3523c0f5913
container_end_page
container_issue
container_start_page 116648
container_title Energy (Oxford)
container_volume 192
creator Piccardo, Chiara
Dodoo, Ambrose
Gustavsson, Leif
Tettey, Uniben
description The energy retrofitting of existing buildings reduces the energy use in the operation phase but the use of additional materials influence the energy use in other life cycle phases of retrofitted buildings. In this study, we analyse the life cycle primary energy implications of different material alternatives when retrofitting an existing building to meet high energy performance levels. We design retrofitting options assuming the highest and lowest value of final energy use, respectively, for passive house standards applicable in Sweden. The retrofitting options include the thermal improvement of the building envelope. We calculate the primary energy use in the operation phase (operation primary energy), as well as in production, maintenance and end-of-life phases (non-operation primary energy). Our results show that the non-operation primary energy use can vary significantly depending on the choice of materials for thermal insulation, cladding systems and windows. Although the operation energy use decreases by 63–78%, we find that the non-operation energy for building retrofitting accounts for up to 21% of the operation energy saving, depending on the passive house performance level and the material alternative. A careful selection of building materials can reduce the non-operation primary energy by up to 40%, especially when using wood-based materials. •Life-cycle primary energy use when retrofitting an existing building is analysed.•Life-cycle primary energy use depends on the passive house standard to achieve.•Materials used in energy-retrofitted buildings affect net primary energy savings.
doi_str_mv 10.1016/j.energy.2019.116648
format article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_lnu_92243</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360544219323436</els_id><sourcerecordid>2371766247</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-16e7f6f9716188f18d7dbf60771750cf768238c50c4516d6f250da3523c0f5913</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-Aw8Fr7YmaZukHoRl_QsLguheQzedrFO67ZqkLvvt7VLx6GmG4Tdv3jxCLhlNGGXipk6gBbfeJ5yyImFMiEwdkQlTMo2FVPkxmdBU0DjPMn5KzryvKaW5KooJWb5BcJ3FELBdRzsMn1GF1oKDNkSrHpvqMN-UARyWjb-NFmghNnvTQLR1uCndPhqPR7jZNmjKgF3rz8mJHXC4-K1T8vH48D5_jhevTy_z2SI2qWQhZgKkFbaQTDClLFOVrFZWUCmZzKmxUiieKjO0Wc5EJSzPaVWmOU8NtXnB0im5HnX9Drb9Sv9a0l2J-h6XM925tW7aXhecZ-mAX4341nVfPfig66537eBQ88GQFIJncqCykTKu896B_ZNlVB8C17Uef9aHwPUY-LB2N67B8PA3gtPeILQGKnRggq46_F_gB9nAi7c</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2371766247</pqid></control><display><type>article</type><title>Retrofitting with different building materials: Life-cycle primary energy implications</title><source>Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)</source><creator>Piccardo, Chiara ; Dodoo, Ambrose ; Gustavsson, Leif ; Tettey, Uniben</creator><creatorcontrib>Piccardo, Chiara ; Dodoo, Ambrose ; Gustavsson, Leif ; Tettey, Uniben</creatorcontrib><description>The energy retrofitting of existing buildings reduces the energy use in the operation phase but the use of additional materials influence the energy use in other life cycle phases of retrofitted buildings. In this study, we analyse the life cycle primary energy implications of different material alternatives when retrofitting an existing building to meet high energy performance levels. We design retrofitting options assuming the highest and lowest value of final energy use, respectively, for passive house standards applicable in Sweden. The retrofitting options include the thermal improvement of the building envelope. We calculate the primary energy use in the operation phase (operation primary energy), as well as in production, maintenance and end-of-life phases (non-operation primary energy). Our results show that the non-operation primary energy use can vary significantly depending on the choice of materials for thermal insulation, cladding systems and windows. Although the operation energy use decreases by 63–78%, we find that the non-operation energy for building retrofitting accounts for up to 21% of the operation energy saving, depending on the passive house performance level and the material alternative. A careful selection of building materials can reduce the non-operation primary energy by up to 40%, especially when using wood-based materials. •Life-cycle primary energy use when retrofitting an existing building is analysed.•Life-cycle primary energy use depends on the passive house standard to achieve.•Materials used in energy-retrofitted buildings affect net primary energy savings.</description><identifier>ISSN: 0360-5442</identifier><identifier>ISSN: 1873-6785</identifier><identifier>EISSN: 1873-6785</identifier><identifier>DOI: 10.1016/j.energy.2019.116648</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Alternative energy sources ; Building envelopes ; Building materials ; Building retrofit ; Buildings ; Byggteknik ; Civil engineering ; Construction materials ; Energy ; Energy conservation ; Energy consumption ; Hållbar byggd miljö ; Life cycle ; Life cycle analysis ; Life cycles ; Materials selection ; Passive house ; Primary energy use ; Retrofitting ; Sustainable Built Environment ; Thermal insulation</subject><ispartof>Energy (Oxford), 2020-02, Vol.192, p.116648, Article 116648</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Feb 1, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-16e7f6f9716188f18d7dbf60771750cf768238c50c4516d6f250da3523c0f5913</citedby><cites>FETCH-LOGICAL-c371t-16e7f6f9716188f18d7dbf60771750cf768238c50c4516d6f250da3523c0f5913</cites><orcidid>0000-0003-2111-806X ; 0000-0002-5220-3454 ; 0000-0002-7944-6739</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-92243$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Piccardo, Chiara</creatorcontrib><creatorcontrib>Dodoo, Ambrose</creatorcontrib><creatorcontrib>Gustavsson, Leif</creatorcontrib><creatorcontrib>Tettey, Uniben</creatorcontrib><title>Retrofitting with different building materials: Life-cycle primary energy implications</title><title>Energy (Oxford)</title><description>The energy retrofitting of existing buildings reduces the energy use in the operation phase but the use of additional materials influence the energy use in other life cycle phases of retrofitted buildings. In this study, we analyse the life cycle primary energy implications of different material alternatives when retrofitting an existing building to meet high energy performance levels. We design retrofitting options assuming the highest and lowest value of final energy use, respectively, for passive house standards applicable in Sweden. The retrofitting options include the thermal improvement of the building envelope. We calculate the primary energy use in the operation phase (operation primary energy), as well as in production, maintenance and end-of-life phases (non-operation primary energy). Our results show that the non-operation primary energy use can vary significantly depending on the choice of materials for thermal insulation, cladding systems and windows. Although the operation energy use decreases by 63–78%, we find that the non-operation energy for building retrofitting accounts for up to 21% of the operation energy saving, depending on the passive house performance level and the material alternative. A careful selection of building materials can reduce the non-operation primary energy by up to 40%, especially when using wood-based materials. •Life-cycle primary energy use when retrofitting an existing building is analysed.•Life-cycle primary energy use depends on the passive house standard to achieve.•Materials used in energy-retrofitted buildings affect net primary energy savings.</description><subject>Alternative energy sources</subject><subject>Building envelopes</subject><subject>Building materials</subject><subject>Building retrofit</subject><subject>Buildings</subject><subject>Byggteknik</subject><subject>Civil engineering</subject><subject>Construction materials</subject><subject>Energy</subject><subject>Energy conservation</subject><subject>Energy consumption</subject><subject>Hållbar byggd miljö</subject><subject>Life cycle</subject><subject>Life cycle analysis</subject><subject>Life cycles</subject><subject>Materials selection</subject><subject>Passive house</subject><subject>Primary energy use</subject><subject>Retrofitting</subject><subject>Sustainable Built Environment</subject><subject>Thermal insulation</subject><issn>0360-5442</issn><issn>1873-6785</issn><issn>1873-6785</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-Aw8Fr7YmaZukHoRl_QsLguheQzedrFO67ZqkLvvt7VLx6GmG4Tdv3jxCLhlNGGXipk6gBbfeJ5yyImFMiEwdkQlTMo2FVPkxmdBU0DjPMn5KzryvKaW5KooJWb5BcJ3FELBdRzsMn1GF1oKDNkSrHpvqMN-UARyWjb-NFmghNnvTQLR1uCndPhqPR7jZNmjKgF3rz8mJHXC4-K1T8vH48D5_jhevTy_z2SI2qWQhZgKkFbaQTDClLFOVrFZWUCmZzKmxUiieKjO0Wc5EJSzPaVWmOU8NtXnB0im5HnX9Drb9Sv9a0l2J-h6XM925tW7aXhecZ-mAX4341nVfPfig66537eBQ88GQFIJncqCykTKu896B_ZNlVB8C17Uef9aHwPUY-LB2N67B8PA3gtPeILQGKnRggq46_F_gB9nAi7c</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Piccardo, Chiara</creator><creator>Dodoo, Ambrose</creator><creator>Gustavsson, Leif</creator><creator>Tettey, Uniben</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D92</scope><orcidid>https://orcid.org/0000-0003-2111-806X</orcidid><orcidid>https://orcid.org/0000-0002-5220-3454</orcidid><orcidid>https://orcid.org/0000-0002-7944-6739</orcidid></search><sort><creationdate>20200201</creationdate><title>Retrofitting with different building materials: Life-cycle primary energy implications</title><author>Piccardo, Chiara ; Dodoo, Ambrose ; Gustavsson, Leif ; Tettey, Uniben</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-16e7f6f9716188f18d7dbf60771750cf768238c50c4516d6f250da3523c0f5913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alternative energy sources</topic><topic>Building envelopes</topic><topic>Building materials</topic><topic>Building retrofit</topic><topic>Buildings</topic><topic>Byggteknik</topic><topic>Civil engineering</topic><topic>Construction materials</topic><topic>Energy</topic><topic>Energy conservation</topic><topic>Energy consumption</topic><topic>Hållbar byggd miljö</topic><topic>Life cycle</topic><topic>Life cycle analysis</topic><topic>Life cycles</topic><topic>Materials selection</topic><topic>Passive house</topic><topic>Primary energy use</topic><topic>Retrofitting</topic><topic>Sustainable Built Environment</topic><topic>Thermal insulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Piccardo, Chiara</creatorcontrib><creatorcontrib>Dodoo, Ambrose</creatorcontrib><creatorcontrib>Gustavsson, Leif</creatorcontrib><creatorcontrib>Tettey, Uniben</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Linnéuniversitetet</collection><jtitle>Energy (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Piccardo, Chiara</au><au>Dodoo, Ambrose</au><au>Gustavsson, Leif</au><au>Tettey, Uniben</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Retrofitting with different building materials: Life-cycle primary energy implications</atitle><jtitle>Energy (Oxford)</jtitle><date>2020-02-01</date><risdate>2020</risdate><volume>192</volume><spage>116648</spage><pages>116648-</pages><artnum>116648</artnum><issn>0360-5442</issn><issn>1873-6785</issn><eissn>1873-6785</eissn><abstract>The energy retrofitting of existing buildings reduces the energy use in the operation phase but the use of additional materials influence the energy use in other life cycle phases of retrofitted buildings. In this study, we analyse the life cycle primary energy implications of different material alternatives when retrofitting an existing building to meet high energy performance levels. We design retrofitting options assuming the highest and lowest value of final energy use, respectively, for passive house standards applicable in Sweden. The retrofitting options include the thermal improvement of the building envelope. We calculate the primary energy use in the operation phase (operation primary energy), as well as in production, maintenance and end-of-life phases (non-operation primary energy). Our results show that the non-operation primary energy use can vary significantly depending on the choice of materials for thermal insulation, cladding systems and windows. Although the operation energy use decreases by 63–78%, we find that the non-operation energy for building retrofitting accounts for up to 21% of the operation energy saving, depending on the passive house performance level and the material alternative. A careful selection of building materials can reduce the non-operation primary energy by up to 40%, especially when using wood-based materials. •Life-cycle primary energy use when retrofitting an existing building is analysed.•Life-cycle primary energy use depends on the passive house standard to achieve.•Materials used in energy-retrofitted buildings affect net primary energy savings.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.energy.2019.116648</doi><orcidid>https://orcid.org/0000-0003-2111-806X</orcidid><orcidid>https://orcid.org/0000-0002-5220-3454</orcidid><orcidid>https://orcid.org/0000-0002-7944-6739</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0360-5442
ispartof Energy (Oxford), 2020-02, Vol.192, p.116648, Article 116648
issn 0360-5442
1873-6785
1873-6785
language eng
recordid cdi_swepub_primary_oai_DiVA_org_lnu_92243
source Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)
subjects Alternative energy sources
Building envelopes
Building materials
Building retrofit
Buildings
Byggteknik
Civil engineering
Construction materials
Energy
Energy conservation
Energy consumption
Hållbar byggd miljö
Life cycle
Life cycle analysis
Life cycles
Materials selection
Passive house
Primary energy use
Retrofitting
Sustainable Built Environment
Thermal insulation
title Retrofitting with different building materials: Life-cycle primary energy implications
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T22%3A23%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Retrofitting%20with%20different%20building%20materials:%20Life-cycle%20primary%20energy%20implications&rft.jtitle=Energy%20(Oxford)&rft.au=Piccardo,%20Chiara&rft.date=2020-02-01&rft.volume=192&rft.spage=116648&rft.pages=116648-&rft.artnum=116648&rft.issn=0360-5442&rft.eissn=1873-6785&rft_id=info:doi/10.1016/j.energy.2019.116648&rft_dat=%3Cproquest_swepu%3E2371766247%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c371t-16e7f6f9716188f18d7dbf60771750cf768238c50c4516d6f250da3523c0f5913%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2371766247&rft_id=info:pmid/&rfr_iscdi=true