Loading…
A regularization of the Frank-Wolfe method and unification of certain nonlinear programming methods
The Frank-Wolfe linearization technique is a popular feasible direction algorithm for the solution of certain linearly constrained nonlinear problems. The popularity of this technique is due in part to its ability to exploit special constraint structures, such as network structures, and in part to t...
Saved in:
Published in: | Mathematical programming 1994-02, Vol.65 (3), p.331-345 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c365t-ee34fca8e77208f1da92cecd51d2e37db46a6ae81c9be402cb24d1e2fe7d85c63 |
---|---|
cites | cdi_FETCH-LOGICAL-c365t-ee34fca8e77208f1da92cecd51d2e37db46a6ae81c9be402cb24d1e2fe7d85c63 |
container_end_page | 345 |
container_issue | 3 |
container_start_page | 331 |
container_title | Mathematical programming |
container_volume | 65 |
creator | MIGDALAS, A |
description | The Frank-Wolfe linearization technique is a popular feasible direction algorithm for the solution of certain linearly constrained nonlinear problems. The popularity of this technique is due in part to its ability to exploit special constraint structures, such as network structures, and in part to the fact that it decomposes nonseparable problems over Cartesian product sets. However, the linearization which induces these advantages is also the source of the main disadvantages of the method: a sublinear rate of convergence and zigzagging behaviour. In order to avoid these disadvantages, a regularization penalty term is added to the objective of the direction generating subproblem. This results in a generic feasible direction method which also includes certain known nonlinear programming methods |
doi_str_mv | 10.1007/BF01581701 |
format | article |
fullrecord | <record><control><sourceid>swepub_cross</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_ltu_12670</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_DiVA_org_ltu_12670</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-ee34fca8e77208f1da92cecd51d2e37db46a6ae81c9be402cb24d1e2fe7d85c63</originalsourceid><addsrcrecordid>eNpFkL1OwzAURi0EEqWw8AQemBAB23GcdCyFAlIlFn5Gy7GvU0NiV3YiBE9PUKsy3eWcT1cHoXNKrikh5c3tktCioiWhB2hCeS4yLrg4RBNCWJEVgpJjdJLSByGE5lU1QXqOIzRDq6L7Ub0LHgeL-zXgZVT-M3sPrQXcQb8OBitv8OCddXpPaoi9ch774FvnQUW8iaGJquucb3ZeOkVHVrUJznZ3il6X9y-Lx2z1_PC0mK8ynYuizwBybrWqoCwZqSw1asY0aFNQwyAvTc2FEgoqqmc1cMJ0zbihwCyUpiq0yKfoarubvmAz1HITXafitwzKyTv3NpchNrLtB0mZKMmIX25xHUNKEexeoET-1ZT_NUf4YgtvVNKqtWMd7dLe4Gx8eSbyX-a2dno</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A regularization of the Frank-Wolfe method and unification of certain nonlinear programming methods</title><source>Springer LINK Archives</source><creator>MIGDALAS, A</creator><creatorcontrib>MIGDALAS, A</creatorcontrib><description>The Frank-Wolfe linearization technique is a popular feasible direction algorithm for the solution of certain linearly constrained nonlinear problems. The popularity of this technique is due in part to its ability to exploit special constraint structures, such as network structures, and in part to the fact that it decomposes nonseparable problems over Cartesian product sets. However, the linearization which induces these advantages is also the source of the main disadvantages of the method: a sublinear rate of convergence and zigzagging behaviour. In order to avoid these disadvantages, a regularization penalty term is added to the objective of the direction generating subproblem. This results in a generic feasible direction method which also includes certain known nonlinear programming methods</description><identifier>ISSN: 0025-5610</identifier><identifier>ISSN: 1436-4646</identifier><identifier>EISSN: 1436-4646</identifier><identifier>DOI: 10.1007/BF01581701</identifier><identifier>CODEN: MHPGA4</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Applied sciences ; Exact sciences and technology ; Industrial Logistics ; Industriell logistik ; Mathematical programming ; Operational research and scientific management ; Operational research. Management science</subject><ispartof>Mathematical programming, 1994-02, Vol.65 (3), p.331-345</ispartof><rights>1994 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-ee34fca8e77208f1da92cecd51d2e37db46a6ae81c9be402cb24d1e2fe7d85c63</citedby><cites>FETCH-LOGICAL-c365t-ee34fca8e77208f1da92cecd51d2e37db46a6ae81c9be402cb24d1e2fe7d85c63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=4220896$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-12670$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>MIGDALAS, A</creatorcontrib><title>A regularization of the Frank-Wolfe method and unification of certain nonlinear programming methods</title><title>Mathematical programming</title><description>The Frank-Wolfe linearization technique is a popular feasible direction algorithm for the solution of certain linearly constrained nonlinear problems. The popularity of this technique is due in part to its ability to exploit special constraint structures, such as network structures, and in part to the fact that it decomposes nonseparable problems over Cartesian product sets. However, the linearization which induces these advantages is also the source of the main disadvantages of the method: a sublinear rate of convergence and zigzagging behaviour. In order to avoid these disadvantages, a regularization penalty term is added to the objective of the direction generating subproblem. This results in a generic feasible direction method which also includes certain known nonlinear programming methods</description><subject>Applied sciences</subject><subject>Exact sciences and technology</subject><subject>Industrial Logistics</subject><subject>Industriell logistik</subject><subject>Mathematical programming</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><issn>0025-5610</issn><issn>1436-4646</issn><issn>1436-4646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNpFkL1OwzAURi0EEqWw8AQemBAB23GcdCyFAlIlFn5Gy7GvU0NiV3YiBE9PUKsy3eWcT1cHoXNKrikh5c3tktCioiWhB2hCeS4yLrg4RBNCWJEVgpJjdJLSByGE5lU1QXqOIzRDq6L7Ub0LHgeL-zXgZVT-M3sPrQXcQb8OBitv8OCddXpPaoi9ch774FvnQUW8iaGJquucb3ZeOkVHVrUJznZ3il6X9y-Lx2z1_PC0mK8ynYuizwBybrWqoCwZqSw1asY0aFNQwyAvTc2FEgoqqmc1cMJ0zbihwCyUpiq0yKfoarubvmAz1HITXafitwzKyTv3NpchNrLtB0mZKMmIX25xHUNKEexeoET-1ZT_NUf4YgtvVNKqtWMd7dLe4Gx8eSbyX-a2dno</recordid><startdate>199402</startdate><enddate>199402</enddate><creator>MIGDALAS, A</creator><general>Springer</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ADTPV</scope><scope>AOWAS</scope></search><sort><creationdate>199402</creationdate><title>A regularization of the Frank-Wolfe method and unification of certain nonlinear programming methods</title><author>MIGDALAS, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-ee34fca8e77208f1da92cecd51d2e37db46a6ae81c9be402cb24d1e2fe7d85c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Applied sciences</topic><topic>Exact sciences and technology</topic><topic>Industrial Logistics</topic><topic>Industriell logistik</topic><topic>Mathematical programming</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>MIGDALAS, A</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>SwePub</collection><collection>SwePub Articles</collection><jtitle>Mathematical programming</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>MIGDALAS, A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A regularization of the Frank-Wolfe method and unification of certain nonlinear programming methods</atitle><jtitle>Mathematical programming</jtitle><date>1994-02</date><risdate>1994</risdate><volume>65</volume><issue>3</issue><spage>331</spage><epage>345</epage><pages>331-345</pages><issn>0025-5610</issn><issn>1436-4646</issn><eissn>1436-4646</eissn><coden>MHPGA4</coden><abstract>The Frank-Wolfe linearization technique is a popular feasible direction algorithm for the solution of certain linearly constrained nonlinear problems. The popularity of this technique is due in part to its ability to exploit special constraint structures, such as network structures, and in part to the fact that it decomposes nonseparable problems over Cartesian product sets. However, the linearization which induces these advantages is also the source of the main disadvantages of the method: a sublinear rate of convergence and zigzagging behaviour. In order to avoid these disadvantages, a regularization penalty term is added to the objective of the direction generating subproblem. This results in a generic feasible direction method which also includes certain known nonlinear programming methods</abstract><cop>Heidelberg</cop><pub>Springer</pub><doi>10.1007/BF01581701</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-5610 |
ispartof | Mathematical programming, 1994-02, Vol.65 (3), p.331-345 |
issn | 0025-5610 1436-4646 1436-4646 |
language | eng |
recordid | cdi_swepub_primary_oai_DiVA_org_ltu_12670 |
source | Springer LINK Archives |
subjects | Applied sciences Exact sciences and technology Industrial Logistics Industriell logistik Mathematical programming Operational research and scientific management Operational research. Management science |
title | A regularization of the Frank-Wolfe method and unification of certain nonlinear programming methods |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T22%3A40%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-swepub_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20regularization%20of%20the%20Frank-Wolfe%20method%20and%20unification%20of%20certain%20nonlinear%20programming%20methods&rft.jtitle=Mathematical%20programming&rft.au=MIGDALAS,%20A&rft.date=1994-02&rft.volume=65&rft.issue=3&rft.spage=331&rft.epage=345&rft.pages=331-345&rft.issn=0025-5610&rft.eissn=1436-4646&rft.coden=MHPGA4&rft_id=info:doi/10.1007/BF01581701&rft_dat=%3Cswepub_cross%3Eoai_DiVA_org_ltu_12670%3C/swepub_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c365t-ee34fca8e77208f1da92cecd51d2e37db46a6ae81c9be402cb24d1e2fe7d85c63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |