Loading…

A regularization of the Frank-Wolfe method and unification of certain nonlinear programming methods

The Frank-Wolfe linearization technique is a popular feasible direction algorithm for the solution of certain linearly constrained nonlinear problems. The popularity of this technique is due in part to its ability to exploit special constraint structures, such as network structures, and in part to t...

Full description

Saved in:
Bibliographic Details
Published in:Mathematical programming 1994-02, Vol.65 (3), p.331-345
Main Author: MIGDALAS, A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c365t-ee34fca8e77208f1da92cecd51d2e37db46a6ae81c9be402cb24d1e2fe7d85c63
cites cdi_FETCH-LOGICAL-c365t-ee34fca8e77208f1da92cecd51d2e37db46a6ae81c9be402cb24d1e2fe7d85c63
container_end_page 345
container_issue 3
container_start_page 331
container_title Mathematical programming
container_volume 65
creator MIGDALAS, A
description The Frank-Wolfe linearization technique is a popular feasible direction algorithm for the solution of certain linearly constrained nonlinear problems. The popularity of this technique is due in part to its ability to exploit special constraint structures, such as network structures, and in part to the fact that it decomposes nonseparable problems over Cartesian product sets. However, the linearization which induces these advantages is also the source of the main disadvantages of the method: a sublinear rate of convergence and zigzagging behaviour. In order to avoid these disadvantages, a regularization penalty term is added to the objective of the direction generating subproblem. This results in a generic feasible direction method which also includes certain known nonlinear programming methods
doi_str_mv 10.1007/BF01581701
format article
fullrecord <record><control><sourceid>swepub_cross</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_ltu_12670</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_DiVA_org_ltu_12670</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-ee34fca8e77208f1da92cecd51d2e37db46a6ae81c9be402cb24d1e2fe7d85c63</originalsourceid><addsrcrecordid>eNpFkL1OwzAURi0EEqWw8AQemBAB23GcdCyFAlIlFn5Gy7GvU0NiV3YiBE9PUKsy3eWcT1cHoXNKrikh5c3tktCioiWhB2hCeS4yLrg4RBNCWJEVgpJjdJLSByGE5lU1QXqOIzRDq6L7Ub0LHgeL-zXgZVT-M3sPrQXcQb8OBitv8OCddXpPaoi9ch774FvnQUW8iaGJquucb3ZeOkVHVrUJznZ3il6X9y-Lx2z1_PC0mK8ynYuizwBybrWqoCwZqSw1asY0aFNQwyAvTc2FEgoqqmc1cMJ0zbihwCyUpiq0yKfoarubvmAz1HITXafitwzKyTv3NpchNrLtB0mZKMmIX25xHUNKEexeoET-1ZT_NUf4YgtvVNKqtWMd7dLe4Gx8eSbyX-a2dno</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A regularization of the Frank-Wolfe method and unification of certain nonlinear programming methods</title><source>Springer LINK Archives</source><creator>MIGDALAS, A</creator><creatorcontrib>MIGDALAS, A</creatorcontrib><description>The Frank-Wolfe linearization technique is a popular feasible direction algorithm for the solution of certain linearly constrained nonlinear problems. The popularity of this technique is due in part to its ability to exploit special constraint structures, such as network structures, and in part to the fact that it decomposes nonseparable problems over Cartesian product sets. However, the linearization which induces these advantages is also the source of the main disadvantages of the method: a sublinear rate of convergence and zigzagging behaviour. In order to avoid these disadvantages, a regularization penalty term is added to the objective of the direction generating subproblem. This results in a generic feasible direction method which also includes certain known nonlinear programming methods</description><identifier>ISSN: 0025-5610</identifier><identifier>ISSN: 1436-4646</identifier><identifier>EISSN: 1436-4646</identifier><identifier>DOI: 10.1007/BF01581701</identifier><identifier>CODEN: MHPGA4</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Applied sciences ; Exact sciences and technology ; Industrial Logistics ; Industriell logistik ; Mathematical programming ; Operational research and scientific management ; Operational research. Management science</subject><ispartof>Mathematical programming, 1994-02, Vol.65 (3), p.331-345</ispartof><rights>1994 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-ee34fca8e77208f1da92cecd51d2e37db46a6ae81c9be402cb24d1e2fe7d85c63</citedby><cites>FETCH-LOGICAL-c365t-ee34fca8e77208f1da92cecd51d2e37db46a6ae81c9be402cb24d1e2fe7d85c63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4220896$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-12670$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>MIGDALAS, A</creatorcontrib><title>A regularization of the Frank-Wolfe method and unification of certain nonlinear programming methods</title><title>Mathematical programming</title><description>The Frank-Wolfe linearization technique is a popular feasible direction algorithm for the solution of certain linearly constrained nonlinear problems. The popularity of this technique is due in part to its ability to exploit special constraint structures, such as network structures, and in part to the fact that it decomposes nonseparable problems over Cartesian product sets. However, the linearization which induces these advantages is also the source of the main disadvantages of the method: a sublinear rate of convergence and zigzagging behaviour. In order to avoid these disadvantages, a regularization penalty term is added to the objective of the direction generating subproblem. This results in a generic feasible direction method which also includes certain known nonlinear programming methods</description><subject>Applied sciences</subject><subject>Exact sciences and technology</subject><subject>Industrial Logistics</subject><subject>Industriell logistik</subject><subject>Mathematical programming</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><issn>0025-5610</issn><issn>1436-4646</issn><issn>1436-4646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNpFkL1OwzAURi0EEqWw8AQemBAB23GcdCyFAlIlFn5Gy7GvU0NiV3YiBE9PUKsy3eWcT1cHoXNKrikh5c3tktCioiWhB2hCeS4yLrg4RBNCWJEVgpJjdJLSByGE5lU1QXqOIzRDq6L7Ub0LHgeL-zXgZVT-M3sPrQXcQb8OBitv8OCddXpPaoi9ch774FvnQUW8iaGJquucb3ZeOkVHVrUJznZ3il6X9y-Lx2z1_PC0mK8ynYuizwBybrWqoCwZqSw1asY0aFNQwyAvTc2FEgoqqmc1cMJ0zbihwCyUpiq0yKfoarubvmAz1HITXafitwzKyTv3NpchNrLtB0mZKMmIX25xHUNKEexeoET-1ZT_NUf4YgtvVNKqtWMd7dLe4Gx8eSbyX-a2dno</recordid><startdate>199402</startdate><enddate>199402</enddate><creator>MIGDALAS, A</creator><general>Springer</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ADTPV</scope><scope>AOWAS</scope></search><sort><creationdate>199402</creationdate><title>A regularization of the Frank-Wolfe method and unification of certain nonlinear programming methods</title><author>MIGDALAS, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-ee34fca8e77208f1da92cecd51d2e37db46a6ae81c9be402cb24d1e2fe7d85c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Applied sciences</topic><topic>Exact sciences and technology</topic><topic>Industrial Logistics</topic><topic>Industriell logistik</topic><topic>Mathematical programming</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>MIGDALAS, A</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>SwePub</collection><collection>SwePub Articles</collection><jtitle>Mathematical programming</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>MIGDALAS, A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A regularization of the Frank-Wolfe method and unification of certain nonlinear programming methods</atitle><jtitle>Mathematical programming</jtitle><date>1994-02</date><risdate>1994</risdate><volume>65</volume><issue>3</issue><spage>331</spage><epage>345</epage><pages>331-345</pages><issn>0025-5610</issn><issn>1436-4646</issn><eissn>1436-4646</eissn><coden>MHPGA4</coden><abstract>The Frank-Wolfe linearization technique is a popular feasible direction algorithm for the solution of certain linearly constrained nonlinear problems. The popularity of this technique is due in part to its ability to exploit special constraint structures, such as network structures, and in part to the fact that it decomposes nonseparable problems over Cartesian product sets. However, the linearization which induces these advantages is also the source of the main disadvantages of the method: a sublinear rate of convergence and zigzagging behaviour. In order to avoid these disadvantages, a regularization penalty term is added to the objective of the direction generating subproblem. This results in a generic feasible direction method which also includes certain known nonlinear programming methods</abstract><cop>Heidelberg</cop><pub>Springer</pub><doi>10.1007/BF01581701</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0025-5610
ispartof Mathematical programming, 1994-02, Vol.65 (3), p.331-345
issn 0025-5610
1436-4646
1436-4646
language eng
recordid cdi_swepub_primary_oai_DiVA_org_ltu_12670
source Springer LINK Archives
subjects Applied sciences
Exact sciences and technology
Industrial Logistics
Industriell logistik
Mathematical programming
Operational research and scientific management
Operational research. Management science
title A regularization of the Frank-Wolfe method and unification of certain nonlinear programming methods
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T22%3A40%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-swepub_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20regularization%20of%20the%20Frank-Wolfe%20method%20and%20unification%20of%20certain%20nonlinear%20programming%20methods&rft.jtitle=Mathematical%20programming&rft.au=MIGDALAS,%20A&rft.date=1994-02&rft.volume=65&rft.issue=3&rft.spage=331&rft.epage=345&rft.pages=331-345&rft.issn=0025-5610&rft.eissn=1436-4646&rft.coden=MHPGA4&rft_id=info:doi/10.1007/BF01581701&rft_dat=%3Cswepub_cross%3Eoai_DiVA_org_ltu_12670%3C/swepub_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c365t-ee34fca8e77208f1da92cecd51d2e37db46a6ae81c9be402cb24d1e2fe7d85c63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true