Loading…

Influence of repetitive stiffness variation on crack growth behaviour in wood

Softwoods have a repetitive variation in stiffness over their growth rings, which is due to the difference in cellular structure between the latewood and earlywood. In this paper, the influence of the repetitive stiffness variation on radially growing cracks is studied by detailed finite element ana...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials science 2000-12, Vol.35 (24), p.6259-6266
Main Authors: Thuvander, F, Jernkvist, L. O, Gunnars, J
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Softwoods have a repetitive variation in stiffness over their growth rings, which is due to the difference in cellular structure between the latewood and earlywood. In this paper, the influence of the repetitive stiffness variation on radially growing cracks is studied by detailed finite element analyses, in which the wood material is represented by a layered orthotropic continuum. The distribution of stress around the crack is found to be very different from crack tip stress fields in homogenous isotropic materials. The latewood layer ahead of the crack experiences a significant tensile stress, which indicates that formation of new secondary cracks ahead of the primary crack front is a likely mechanism for crack propagation. This mechanism is also favoured by the fact that the primary crack is subjected to a significant shielding from the stiff latewood, which tends to arrest the primary crack in the soft earlywood layer. Analyses are performed for materials with various growth ring widths, and the calculated results are compared with reported experimental observations.
ISSN:0022-2461
1573-4803
1573-4803
DOI:10.1023/A:1026766203501