Loading…

Mechanical properties of cellulose nanofiber (CNF) reinforced polylactic acid (PLA) prepared by twin screw extrusion

The aim of this study was to develop cellulose nanofiber (CNF) reinforced polylactic acid (PLA) by twin screw extrusion. Nanocomposites were prepared by premixing a master batch with high concentration of CNFs in PLA and diluting to final concentrations (1, 3, 5 wt.%) during the extrusion. Morpholog...

Full description

Saved in:
Bibliographic Details
Published in:Composites science and technology 2010-10, Vol.70 (12), p.1742-1747
Main Authors: Jonoobi, Mehdi, Harun, Jalaluddin, Mathew, Aji P., Oksman, Kristiina
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c572t-4d3e4611b8f0cec00ccbb7d602cccef4a2652a0f6ef570f84f2f74e0ce92a1533
cites cdi_FETCH-LOGICAL-c572t-4d3e4611b8f0cec00ccbb7d602cccef4a2652a0f6ef570f84f2f74e0ce92a1533
container_end_page 1747
container_issue 12
container_start_page 1742
container_title Composites science and technology
container_volume 70
creator Jonoobi, Mehdi
Harun, Jalaluddin
Mathew, Aji P.
Oksman, Kristiina
description The aim of this study was to develop cellulose nanofiber (CNF) reinforced polylactic acid (PLA) by twin screw extrusion. Nanocomposites were prepared by premixing a master batch with high concentration of CNFs in PLA and diluting to final concentrations (1, 3, 5 wt.%) during the extrusion. Morphology, mechanical and dynamic mechanical properties (DMA) were studied theoretically and experimentally to see how different CNF concentrations affected the composites’ properties. The tensile modulus and strength increased from 2.9 GPa to 3.6 GPa and from 58 MPa to 71 MPa, respectively, for nanocomposites with 5 wt.% CNF. The DMA results were also positive; the storage modulus increased for all nanocomposites compared to PLA; being more significant in the high temperature region (70 °C). The addition of nanofibers shifted the tan delta peak towards higher temperatures. The tan delta peak of the PLA shifted from 70 °C to 76 °C for composites with 5 wt.% CNF.
doi_str_mv 10.1016/j.compscitech.2010.07.005
format article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_ltu_13972</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0266353810002629</els_id><sourcerecordid>1671236549</sourcerecordid><originalsourceid>FETCH-LOGICAL-c572t-4d3e4611b8f0cec00ccbb7d602cccef4a2652a0f6ef570f84f2f74e0ce92a1533</originalsourceid><addsrcrecordid>eNqNkU-P0zAQxSMEEmXhO5gDUivRMnZiJzlWXZZFKn8OwNVyJmPWVRoHO9nSb4-rrFZw42Rp_Jv3NO9l2WsOGw5cvTts0B-HiG4kvNsISHMoNwDySbbgVVmvOUh4mi1AKLXOZV49z17EeACAUtZikY2f0p7pHZqODcEPFEZHkXnLkLpu6nwk1pveW9dQYMvd55sVC-R66wNSywbfnTuDo0Nm0LVs-XW_XSUhGkxI382ZjSfXs4iBTox-j2GKzvcvs2fWdJFePbxX2feb9992t-v9lw8fd9v9GmUpxnXR5lQozpvKAhICIDZN2SoQiEi2MEJJYcAqsrIEWxVW2LKgxNbCcJnnV9nbWTeeaJgaPQR3NOGsvXH62v3Yah9-6m6cNM_rUiR8NeN3pvuHvd3u9WUGoEqupLrniV3ObArt10Rx1EcXL5GZnvwUNU-kyJUs6oTWM4rBxxjIPmpz0JcS9UH_VaK-lKihTG4y7b55sDExVWSD6dHFRwGRi6KA6nLpbuYoxXnvKOikRn2qyAXCUbfe_YfbH1V7ubc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671236549</pqid></control><display><type>article</type><title>Mechanical properties of cellulose nanofiber (CNF) reinforced polylactic acid (PLA) prepared by twin screw extrusion</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Jonoobi, Mehdi ; Harun, Jalaluddin ; Mathew, Aji P. ; Oksman, Kristiina</creator><creatorcontrib>Jonoobi, Mehdi ; Harun, Jalaluddin ; Mathew, Aji P. ; Oksman, Kristiina</creatorcontrib><description>The aim of this study was to develop cellulose nanofiber (CNF) reinforced polylactic acid (PLA) by twin screw extrusion. Nanocomposites were prepared by premixing a master batch with high concentration of CNFs in PLA and diluting to final concentrations (1, 3, 5 wt.%) during the extrusion. Morphology, mechanical and dynamic mechanical properties (DMA) were studied theoretically and experimentally to see how different CNF concentrations affected the composites’ properties. The tensile modulus and strength increased from 2.9 GPa to 3.6 GPa and from 58 MPa to 71 MPa, respectively, for nanocomposites with 5 wt.% CNF. The DMA results were also positive; the storage modulus increased for all nanocomposites compared to PLA; being more significant in the high temperature region (70 °C). The addition of nanofibers shifted the tan delta peak towards higher temperatures. The tan delta peak of the PLA shifted from 70 °C to 76 °C for composites with 5 wt.% CNF.</description><identifier>ISSN: 0266-3538</identifier><identifier>ISSN: 1879-1050</identifier><identifier>EISSN: 1879-1050</identifier><identifier>DOI: 10.1016/j.compscitech.2010.07.005</identifier><identifier>CODEN: CSTCEH</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>A. Nanocomposites ; Applied sciences ; B. Mechanical properties ; C. Modeling ; Cellulose ; Composites ; D. Dynamic mechanical thermal analysis ; Deltas ; E. Extrusion ; Engineering Sciences ; Exact sciences and technology ; Extrusion ; Forms of application and semi-finished materials ; Materials ; Nanocomposites ; Nanomaterials ; Nanostructure ; Polylactic acid ; Polymer industry, paints, wood ; Premixing ; Technology of polymers ; Trä och bionanokompositer ; Wood and Bionanocomposites</subject><ispartof>Composites science and technology, 2010-10, Vol.70 (12), p.1742-1747</ispartof><rights>2010 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c572t-4d3e4611b8f0cec00ccbb7d602cccef4a2652a0f6ef570f84f2f74e0ce92a1533</citedby><cites>FETCH-LOGICAL-c572t-4d3e4611b8f0cec00ccbb7d602cccef4a2652a0f6ef570f84f2f74e0ce92a1533</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23244083$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00671656$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-13972$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Jonoobi, Mehdi</creatorcontrib><creatorcontrib>Harun, Jalaluddin</creatorcontrib><creatorcontrib>Mathew, Aji P.</creatorcontrib><creatorcontrib>Oksman, Kristiina</creatorcontrib><title>Mechanical properties of cellulose nanofiber (CNF) reinforced polylactic acid (PLA) prepared by twin screw extrusion</title><title>Composites science and technology</title><description>The aim of this study was to develop cellulose nanofiber (CNF) reinforced polylactic acid (PLA) by twin screw extrusion. Nanocomposites were prepared by premixing a master batch with high concentration of CNFs in PLA and diluting to final concentrations (1, 3, 5 wt.%) during the extrusion. Morphology, mechanical and dynamic mechanical properties (DMA) were studied theoretically and experimentally to see how different CNF concentrations affected the composites’ properties. The tensile modulus and strength increased from 2.9 GPa to 3.6 GPa and from 58 MPa to 71 MPa, respectively, for nanocomposites with 5 wt.% CNF. The DMA results were also positive; the storage modulus increased for all nanocomposites compared to PLA; being more significant in the high temperature region (70 °C). The addition of nanofibers shifted the tan delta peak towards higher temperatures. The tan delta peak of the PLA shifted from 70 °C to 76 °C for composites with 5 wt.% CNF.</description><subject>A. Nanocomposites</subject><subject>Applied sciences</subject><subject>B. Mechanical properties</subject><subject>C. Modeling</subject><subject>Cellulose</subject><subject>Composites</subject><subject>D. Dynamic mechanical thermal analysis</subject><subject>Deltas</subject><subject>E. Extrusion</subject><subject>Engineering Sciences</subject><subject>Exact sciences and technology</subject><subject>Extrusion</subject><subject>Forms of application and semi-finished materials</subject><subject>Materials</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>Polylactic acid</subject><subject>Polymer industry, paints, wood</subject><subject>Premixing</subject><subject>Technology of polymers</subject><subject>Trä och bionanokompositer</subject><subject>Wood and Bionanocomposites</subject><issn>0266-3538</issn><issn>1879-1050</issn><issn>1879-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqNkU-P0zAQxSMEEmXhO5gDUivRMnZiJzlWXZZFKn8OwNVyJmPWVRoHO9nSb4-rrFZw42Rp_Jv3NO9l2WsOGw5cvTts0B-HiG4kvNsISHMoNwDySbbgVVmvOUh4mi1AKLXOZV49z17EeACAUtZikY2f0p7pHZqODcEPFEZHkXnLkLpu6nwk1pveW9dQYMvd55sVC-R66wNSywbfnTuDo0Nm0LVs-XW_XSUhGkxI382ZjSfXs4iBTox-j2GKzvcvs2fWdJFePbxX2feb9992t-v9lw8fd9v9GmUpxnXR5lQozpvKAhICIDZN2SoQiEi2MEJJYcAqsrIEWxVW2LKgxNbCcJnnV9nbWTeeaJgaPQR3NOGsvXH62v3Yah9-6m6cNM_rUiR8NeN3pvuHvd3u9WUGoEqupLrniV3ObArt10Rx1EcXL5GZnvwUNU-kyJUs6oTWM4rBxxjIPmpz0JcS9UH_VaK-lKihTG4y7b55sDExVWSD6dHFRwGRi6KA6nLpbuYoxXnvKOikRn2qyAXCUbfe_YfbH1V7ubc</recordid><startdate>201010</startdate><enddate>201010</enddate><creator>Jonoobi, Mehdi</creator><creator>Harun, Jalaluddin</creator><creator>Mathew, Aji P.</creator><creator>Oksman, Kristiina</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><scope>1XC</scope><scope>VOOES</scope><scope>ADTPV</scope><scope>AOWAS</scope></search><sort><creationdate>201010</creationdate><title>Mechanical properties of cellulose nanofiber (CNF) reinforced polylactic acid (PLA) prepared by twin screw extrusion</title><author>Jonoobi, Mehdi ; Harun, Jalaluddin ; Mathew, Aji P. ; Oksman, Kristiina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c572t-4d3e4611b8f0cec00ccbb7d602cccef4a2652a0f6ef570f84f2f74e0ce92a1533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>A. Nanocomposites</topic><topic>Applied sciences</topic><topic>B. Mechanical properties</topic><topic>C. Modeling</topic><topic>Cellulose</topic><topic>Composites</topic><topic>D. Dynamic mechanical thermal analysis</topic><topic>Deltas</topic><topic>E. Extrusion</topic><topic>Engineering Sciences</topic><topic>Exact sciences and technology</topic><topic>Extrusion</topic><topic>Forms of application and semi-finished materials</topic><topic>Materials</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>Polylactic acid</topic><topic>Polymer industry, paints, wood</topic><topic>Premixing</topic><topic>Technology of polymers</topic><topic>Trä och bionanokompositer</topic><topic>Wood and Bionanocomposites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jonoobi, Mehdi</creatorcontrib><creatorcontrib>Harun, Jalaluddin</creatorcontrib><creatorcontrib>Mathew, Aji P.</creatorcontrib><creatorcontrib>Oksman, Kristiina</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><jtitle>Composites science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jonoobi, Mehdi</au><au>Harun, Jalaluddin</au><au>Mathew, Aji P.</au><au>Oksman, Kristiina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical properties of cellulose nanofiber (CNF) reinforced polylactic acid (PLA) prepared by twin screw extrusion</atitle><jtitle>Composites science and technology</jtitle><date>2010-10</date><risdate>2010</risdate><volume>70</volume><issue>12</issue><spage>1742</spage><epage>1747</epage><pages>1742-1747</pages><issn>0266-3538</issn><issn>1879-1050</issn><eissn>1879-1050</eissn><coden>CSTCEH</coden><abstract>The aim of this study was to develop cellulose nanofiber (CNF) reinforced polylactic acid (PLA) by twin screw extrusion. Nanocomposites were prepared by premixing a master batch with high concentration of CNFs in PLA and diluting to final concentrations (1, 3, 5 wt.%) during the extrusion. Morphology, mechanical and dynamic mechanical properties (DMA) were studied theoretically and experimentally to see how different CNF concentrations affected the composites’ properties. The tensile modulus and strength increased from 2.9 GPa to 3.6 GPa and from 58 MPa to 71 MPa, respectively, for nanocomposites with 5 wt.% CNF. The DMA results were also positive; the storage modulus increased for all nanocomposites compared to PLA; being more significant in the high temperature region (70 °C). The addition of nanofibers shifted the tan delta peak towards higher temperatures. The tan delta peak of the PLA shifted from 70 °C to 76 °C for composites with 5 wt.% CNF.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compscitech.2010.07.005</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0266-3538
ispartof Composites science and technology, 2010-10, Vol.70 (12), p.1742-1747
issn 0266-3538
1879-1050
1879-1050
language eng
recordid cdi_swepub_primary_oai_DiVA_org_ltu_13972
source ScienceDirect Freedom Collection 2022-2024
subjects A. Nanocomposites
Applied sciences
B. Mechanical properties
C. Modeling
Cellulose
Composites
D. Dynamic mechanical thermal analysis
Deltas
E. Extrusion
Engineering Sciences
Exact sciences and technology
Extrusion
Forms of application and semi-finished materials
Materials
Nanocomposites
Nanomaterials
Nanostructure
Polylactic acid
Polymer industry, paints, wood
Premixing
Technology of polymers
Trä och bionanokompositer
Wood and Bionanocomposites
title Mechanical properties of cellulose nanofiber (CNF) reinforced polylactic acid (PLA) prepared by twin screw extrusion
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A46%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%20properties%20of%20cellulose%20nanofiber%20(CNF)%20reinforced%20polylactic%20acid%20(PLA)%20prepared%20by%20twin%20screw%20extrusion&rft.jtitle=Composites%20science%20and%20technology&rft.au=Jonoobi,%20Mehdi&rft.date=2010-10&rft.volume=70&rft.issue=12&rft.spage=1742&rft.epage=1747&rft.pages=1742-1747&rft.issn=0266-3538&rft.eissn=1879-1050&rft.coden=CSTCEH&rft_id=info:doi/10.1016/j.compscitech.2010.07.005&rft_dat=%3Cproquest_swepu%3E1671236549%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c572t-4d3e4611b8f0cec00ccbb7d602cccef4a2652a0f6ef570f84f2f74e0ce92a1533%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1671236549&rft_id=info:pmid/&rfr_iscdi=true