Loading…
Mechanical properties of cellulose nanofiber (CNF) reinforced polylactic acid (PLA) prepared by twin screw extrusion
The aim of this study was to develop cellulose nanofiber (CNF) reinforced polylactic acid (PLA) by twin screw extrusion. Nanocomposites were prepared by premixing a master batch with high concentration of CNFs in PLA and diluting to final concentrations (1, 3, 5 wt.%) during the extrusion. Morpholog...
Saved in:
Published in: | Composites science and technology 2010-10, Vol.70 (12), p.1742-1747 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c572t-4d3e4611b8f0cec00ccbb7d602cccef4a2652a0f6ef570f84f2f74e0ce92a1533 |
---|---|
cites | cdi_FETCH-LOGICAL-c572t-4d3e4611b8f0cec00ccbb7d602cccef4a2652a0f6ef570f84f2f74e0ce92a1533 |
container_end_page | 1747 |
container_issue | 12 |
container_start_page | 1742 |
container_title | Composites science and technology |
container_volume | 70 |
creator | Jonoobi, Mehdi Harun, Jalaluddin Mathew, Aji P. Oksman, Kristiina |
description | The aim of this study was to develop cellulose nanofiber (CNF) reinforced polylactic acid (PLA) by twin screw extrusion. Nanocomposites were prepared by premixing a master batch with high concentration of CNFs in PLA and diluting to final concentrations (1, 3, 5
wt.%) during the extrusion. Morphology, mechanical and dynamic mechanical properties (DMA) were studied theoretically and experimentally to see how different CNF concentrations affected the composites’ properties. The tensile modulus and strength increased from 2.9
GPa to 3.6
GPa and from 58
MPa to 71
MPa, respectively, for nanocomposites with 5
wt.% CNF. The DMA results were also positive; the storage modulus increased for all nanocomposites compared to PLA; being more significant in the high temperature region (70
°C). The addition of nanofibers shifted the tan delta peak towards higher temperatures. The tan delta peak of the PLA shifted from 70
°C to 76
°C for composites with 5
wt.% CNF. |
doi_str_mv | 10.1016/j.compscitech.2010.07.005 |
format | article |
fullrecord | <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_ltu_13972</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0266353810002629</els_id><sourcerecordid>1671236549</sourcerecordid><originalsourceid>FETCH-LOGICAL-c572t-4d3e4611b8f0cec00ccbb7d602cccef4a2652a0f6ef570f84f2f74e0ce92a1533</originalsourceid><addsrcrecordid>eNqNkU-P0zAQxSMEEmXhO5gDUivRMnZiJzlWXZZFKn8OwNVyJmPWVRoHO9nSb4-rrFZw42Rp_Jv3NO9l2WsOGw5cvTts0B-HiG4kvNsISHMoNwDySbbgVVmvOUh4mi1AKLXOZV49z17EeACAUtZikY2f0p7pHZqODcEPFEZHkXnLkLpu6nwk1pveW9dQYMvd55sVC-R66wNSywbfnTuDo0Nm0LVs-XW_XSUhGkxI382ZjSfXs4iBTox-j2GKzvcvs2fWdJFePbxX2feb9992t-v9lw8fd9v9GmUpxnXR5lQozpvKAhICIDZN2SoQiEi2MEJJYcAqsrIEWxVW2LKgxNbCcJnnV9nbWTeeaJgaPQR3NOGsvXH62v3Yah9-6m6cNM_rUiR8NeN3pvuHvd3u9WUGoEqupLrniV3ObArt10Rx1EcXL5GZnvwUNU-kyJUs6oTWM4rBxxjIPmpz0JcS9UH_VaK-lKihTG4y7b55sDExVWSD6dHFRwGRi6KA6nLpbuYoxXnvKOikRn2qyAXCUbfe_YfbH1V7ubc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671236549</pqid></control><display><type>article</type><title>Mechanical properties of cellulose nanofiber (CNF) reinforced polylactic acid (PLA) prepared by twin screw extrusion</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Jonoobi, Mehdi ; Harun, Jalaluddin ; Mathew, Aji P. ; Oksman, Kristiina</creator><creatorcontrib>Jonoobi, Mehdi ; Harun, Jalaluddin ; Mathew, Aji P. ; Oksman, Kristiina</creatorcontrib><description>The aim of this study was to develop cellulose nanofiber (CNF) reinforced polylactic acid (PLA) by twin screw extrusion. Nanocomposites were prepared by premixing a master batch with high concentration of CNFs in PLA and diluting to final concentrations (1, 3, 5
wt.%) during the extrusion. Morphology, mechanical and dynamic mechanical properties (DMA) were studied theoretically and experimentally to see how different CNF concentrations affected the composites’ properties. The tensile modulus and strength increased from 2.9
GPa to 3.6
GPa and from 58
MPa to 71
MPa, respectively, for nanocomposites with 5
wt.% CNF. The DMA results were also positive; the storage modulus increased for all nanocomposites compared to PLA; being more significant in the high temperature region (70
°C). The addition of nanofibers shifted the tan delta peak towards higher temperatures. The tan delta peak of the PLA shifted from 70
°C to 76
°C for composites with 5
wt.% CNF.</description><identifier>ISSN: 0266-3538</identifier><identifier>ISSN: 1879-1050</identifier><identifier>EISSN: 1879-1050</identifier><identifier>DOI: 10.1016/j.compscitech.2010.07.005</identifier><identifier>CODEN: CSTCEH</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>A. Nanocomposites ; Applied sciences ; B. Mechanical properties ; C. Modeling ; Cellulose ; Composites ; D. Dynamic mechanical thermal analysis ; Deltas ; E. Extrusion ; Engineering Sciences ; Exact sciences and technology ; Extrusion ; Forms of application and semi-finished materials ; Materials ; Nanocomposites ; Nanomaterials ; Nanostructure ; Polylactic acid ; Polymer industry, paints, wood ; Premixing ; Technology of polymers ; Trä och bionanokompositer ; Wood and Bionanocomposites</subject><ispartof>Composites science and technology, 2010-10, Vol.70 (12), p.1742-1747</ispartof><rights>2010 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c572t-4d3e4611b8f0cec00ccbb7d602cccef4a2652a0f6ef570f84f2f74e0ce92a1533</citedby><cites>FETCH-LOGICAL-c572t-4d3e4611b8f0cec00ccbb7d602cccef4a2652a0f6ef570f84f2f74e0ce92a1533</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23244083$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00671656$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-13972$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Jonoobi, Mehdi</creatorcontrib><creatorcontrib>Harun, Jalaluddin</creatorcontrib><creatorcontrib>Mathew, Aji P.</creatorcontrib><creatorcontrib>Oksman, Kristiina</creatorcontrib><title>Mechanical properties of cellulose nanofiber (CNF) reinforced polylactic acid (PLA) prepared by twin screw extrusion</title><title>Composites science and technology</title><description>The aim of this study was to develop cellulose nanofiber (CNF) reinforced polylactic acid (PLA) by twin screw extrusion. Nanocomposites were prepared by premixing a master batch with high concentration of CNFs in PLA and diluting to final concentrations (1, 3, 5
wt.%) during the extrusion. Morphology, mechanical and dynamic mechanical properties (DMA) were studied theoretically and experimentally to see how different CNF concentrations affected the composites’ properties. The tensile modulus and strength increased from 2.9
GPa to 3.6
GPa and from 58
MPa to 71
MPa, respectively, for nanocomposites with 5
wt.% CNF. The DMA results were also positive; the storage modulus increased for all nanocomposites compared to PLA; being more significant in the high temperature region (70
°C). The addition of nanofibers shifted the tan delta peak towards higher temperatures. The tan delta peak of the PLA shifted from 70
°C to 76
°C for composites with 5
wt.% CNF.</description><subject>A. Nanocomposites</subject><subject>Applied sciences</subject><subject>B. Mechanical properties</subject><subject>C. Modeling</subject><subject>Cellulose</subject><subject>Composites</subject><subject>D. Dynamic mechanical thermal analysis</subject><subject>Deltas</subject><subject>E. Extrusion</subject><subject>Engineering Sciences</subject><subject>Exact sciences and technology</subject><subject>Extrusion</subject><subject>Forms of application and semi-finished materials</subject><subject>Materials</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>Polylactic acid</subject><subject>Polymer industry, paints, wood</subject><subject>Premixing</subject><subject>Technology of polymers</subject><subject>Trä och bionanokompositer</subject><subject>Wood and Bionanocomposites</subject><issn>0266-3538</issn><issn>1879-1050</issn><issn>1879-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqNkU-P0zAQxSMEEmXhO5gDUivRMnZiJzlWXZZFKn8OwNVyJmPWVRoHO9nSb4-rrFZw42Rp_Jv3NO9l2WsOGw5cvTts0B-HiG4kvNsISHMoNwDySbbgVVmvOUh4mi1AKLXOZV49z17EeACAUtZikY2f0p7pHZqODcEPFEZHkXnLkLpu6nwk1pveW9dQYMvd55sVC-R66wNSywbfnTuDo0Nm0LVs-XW_XSUhGkxI382ZjSfXs4iBTox-j2GKzvcvs2fWdJFePbxX2feb9992t-v9lw8fd9v9GmUpxnXR5lQozpvKAhICIDZN2SoQiEi2MEJJYcAqsrIEWxVW2LKgxNbCcJnnV9nbWTeeaJgaPQR3NOGsvXH62v3Yah9-6m6cNM_rUiR8NeN3pvuHvd3u9WUGoEqupLrniV3ObArt10Rx1EcXL5GZnvwUNU-kyJUs6oTWM4rBxxjIPmpz0JcS9UH_VaK-lKihTG4y7b55sDExVWSD6dHFRwGRi6KA6nLpbuYoxXnvKOikRn2qyAXCUbfe_YfbH1V7ubc</recordid><startdate>201010</startdate><enddate>201010</enddate><creator>Jonoobi, Mehdi</creator><creator>Harun, Jalaluddin</creator><creator>Mathew, Aji P.</creator><creator>Oksman, Kristiina</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><scope>1XC</scope><scope>VOOES</scope><scope>ADTPV</scope><scope>AOWAS</scope></search><sort><creationdate>201010</creationdate><title>Mechanical properties of cellulose nanofiber (CNF) reinforced polylactic acid (PLA) prepared by twin screw extrusion</title><author>Jonoobi, Mehdi ; Harun, Jalaluddin ; Mathew, Aji P. ; Oksman, Kristiina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c572t-4d3e4611b8f0cec00ccbb7d602cccef4a2652a0f6ef570f84f2f74e0ce92a1533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>A. Nanocomposites</topic><topic>Applied sciences</topic><topic>B. Mechanical properties</topic><topic>C. Modeling</topic><topic>Cellulose</topic><topic>Composites</topic><topic>D. Dynamic mechanical thermal analysis</topic><topic>Deltas</topic><topic>E. Extrusion</topic><topic>Engineering Sciences</topic><topic>Exact sciences and technology</topic><topic>Extrusion</topic><topic>Forms of application and semi-finished materials</topic><topic>Materials</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>Polylactic acid</topic><topic>Polymer industry, paints, wood</topic><topic>Premixing</topic><topic>Technology of polymers</topic><topic>Trä och bionanokompositer</topic><topic>Wood and Bionanocomposites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jonoobi, Mehdi</creatorcontrib><creatorcontrib>Harun, Jalaluddin</creatorcontrib><creatorcontrib>Mathew, Aji P.</creatorcontrib><creatorcontrib>Oksman, Kristiina</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><jtitle>Composites science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jonoobi, Mehdi</au><au>Harun, Jalaluddin</au><au>Mathew, Aji P.</au><au>Oksman, Kristiina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical properties of cellulose nanofiber (CNF) reinforced polylactic acid (PLA) prepared by twin screw extrusion</atitle><jtitle>Composites science and technology</jtitle><date>2010-10</date><risdate>2010</risdate><volume>70</volume><issue>12</issue><spage>1742</spage><epage>1747</epage><pages>1742-1747</pages><issn>0266-3538</issn><issn>1879-1050</issn><eissn>1879-1050</eissn><coden>CSTCEH</coden><abstract>The aim of this study was to develop cellulose nanofiber (CNF) reinforced polylactic acid (PLA) by twin screw extrusion. Nanocomposites were prepared by premixing a master batch with high concentration of CNFs in PLA and diluting to final concentrations (1, 3, 5
wt.%) during the extrusion. Morphology, mechanical and dynamic mechanical properties (DMA) were studied theoretically and experimentally to see how different CNF concentrations affected the composites’ properties. The tensile modulus and strength increased from 2.9
GPa to 3.6
GPa and from 58
MPa to 71
MPa, respectively, for nanocomposites with 5
wt.% CNF. The DMA results were also positive; the storage modulus increased for all nanocomposites compared to PLA; being more significant in the high temperature region (70
°C). The addition of nanofibers shifted the tan delta peak towards higher temperatures. The tan delta peak of the PLA shifted from 70
°C to 76
°C for composites with 5
wt.% CNF.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compscitech.2010.07.005</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0266-3538 |
ispartof | Composites science and technology, 2010-10, Vol.70 (12), p.1742-1747 |
issn | 0266-3538 1879-1050 1879-1050 |
language | eng |
recordid | cdi_swepub_primary_oai_DiVA_org_ltu_13972 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | A. Nanocomposites Applied sciences B. Mechanical properties C. Modeling Cellulose Composites D. Dynamic mechanical thermal analysis Deltas E. Extrusion Engineering Sciences Exact sciences and technology Extrusion Forms of application and semi-finished materials Materials Nanocomposites Nanomaterials Nanostructure Polylactic acid Polymer industry, paints, wood Premixing Technology of polymers Trä och bionanokompositer Wood and Bionanocomposites |
title | Mechanical properties of cellulose nanofiber (CNF) reinforced polylactic acid (PLA) prepared by twin screw extrusion |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A46%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%20properties%20of%20cellulose%20nanofiber%20(CNF)%20reinforced%20polylactic%20acid%20(PLA)%20prepared%20by%20twin%20screw%20extrusion&rft.jtitle=Composites%20science%20and%20technology&rft.au=Jonoobi,%20Mehdi&rft.date=2010-10&rft.volume=70&rft.issue=12&rft.spage=1742&rft.epage=1747&rft.pages=1742-1747&rft.issn=0266-3538&rft.eissn=1879-1050&rft.coden=CSTCEH&rft_id=info:doi/10.1016/j.compscitech.2010.07.005&rft_dat=%3Cproquest_swepu%3E1671236549%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c572t-4d3e4611b8f0cec00ccbb7d602cccef4a2652a0f6ef570f84f2f74e0ce92a1533%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1671236549&rft_id=info:pmid/&rfr_iscdi=true |