Loading…
Locating primary sound sources in scattering media using multifrequency digital holographic reconstruction
Multifrequency digital holographic reconstructions of primary sound sources embedded in scattering media are demonstrated. The sound field is measured with a scanning laser Doppler vibrometer (LDV) and broadening of the spectral content of the sound source is achieved by tuning the primary ultrasoun...
Saved in:
Published in: | Optical Engineering 2006-01, Vol.45 (1), p.015801-015806 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Multifrequency digital holographic reconstructions of primary sound sources embedded in scattering media are demonstrated. The sound field is measured with a scanning laser Doppler vibrometer (LDV) and broadening of the spectral content of the sound source is achieved by tuning the primary ultrasound (US) transducer around its resonance frequency. The results show that combining the complex amplitudes from the different frequency reconstructions results in a reduced susceptibility to multiple scattered sound and makes possible a quite thorough localization of the primary sound source. The depth resolution obtained is 11 US frequencies. This depth sensitivity is improved even further to only 2.8 wavelengths by applying a filter determined from the standard deviation over the phases. |
---|---|
ISSN: | 0091-3286 1560-2303 1560-2303 |
DOI: | 10.1117/1.2162032 |