Loading…

Effect of pectate lyase bioscouring on physical, chemical and low-stress mechanical properties of cotton fabrics

The main objective of the present study was to meticulously investigate an inclusive set of physicochemical and handle properties (determined through Kawabata evaluation system) of bioscoured cotton fabrics. The application of a commercial pectinase preparation, Bioprep 3000L, for a range of concent...

Full description

Saved in:
Bibliographic Details
Published in:Bioresource technology 2008-11, Vol.99 (17), p.8185-8192
Main Authors: Kalantzi, Styliani, Mamma, Diomi, Christakopoulos, Paul, Kekos, Dimitris
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The main objective of the present study was to meticulously investigate an inclusive set of physicochemical and handle properties (determined through Kawabata evaluation system) of bioscoured cotton fabrics. The application of a commercial pectinase preparation, Bioprep 3000L, for a range of concentrations and treatment times, could create a pectin-free textile with low wax content. Multiple regression analysis was used to describe the effect of enzymatic process variables on pectin and waxes removal. Comparison of fabrics’ properties such as wettability, whiteness, crystallinity index, and dyeing behaviour, confirmed that bioscouring could be as much effective as the conventional alkaline process. Uncovering the relationship between the composition of materials and their physicochemical properties was attempted. The application of higher enzyme concentrations generated fabrics with improved low-stress mechanical properties. Bending and shear rigidity, compressional resilience, as well as, extensibility of enzymatically treated cotton fabrics could be efficiently predicted by means of a single independent variable, the crystallinity index.
ISSN:0960-8524
1873-2976
1873-2976
DOI:10.1016/j.biortech.2008.03.020