Loading…

Mechanical Properties of All-Cellulose Composites Made from Pineapple Leaf Microfibers

Pineapple leaf microfibers were firstly prepared using steam explosion, and all-cellulose composites were subsequently prepared using a surface selective dissolution process with the solvent of lithium chloride and N,N-dimethylacetamide (LiCl/DMAc). Mechanical properties and surface morphology of al...

Full description

Saved in:
Bibliographic Details
Published in:Key Engineering Materials 2015, Vol.659, p.453-457
Main Authors: Tanpichai, Supachok, Witayakran, Suteera
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Pineapple leaf microfibers were firstly prepared using steam explosion, and all-cellulose composites were subsequently prepared using a surface selective dissolution process with the solvent of lithium chloride and N,N-dimethylacetamide (LiCl/DMAc). Mechanical properties and surface morphology of all-cellulose composites with immersion times of pineapple leaf microfibers in the solvent of LiCl/DMAc were investigated using tensile testing and scanning electron microscopy, respectively. The tensile strength of the all-cellulose composites with 120 min-immersion time was approximately 28 times higher than that of the pineapple leaf microfiber mats. These biocomposites made from pineapple leaf microfibers could be one of the potential alternatives to replace glass fiber reinforced composites.
ISSN:1013-9826
1662-9795
1662-9795
DOI:10.4028/www.scientific.net/KEM.659.453