Loading…

Distributed Multi-Agent Gaussian Regression via Finite-Dimensional Approximations

We consider the problem of distributedly estimating Gaussian processes in multi-agent frameworks. Each agent collects few measurements and aims to collaboratively reconstruct a common estimate based on all data. Agents are assumed with limited computational and communication capabilities and to gath...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on pattern analysis and machine intelligence 2019-09, Vol.41 (9), p.2098-2111
Main Authors: Pillonetto, Gianluigi, Schenato, Luca, Varagnolo, Damiano
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c432t-4255120395498801b6d4da70575cb8f47474dbb3e7057e518bb50be3f8b111863
cites cdi_FETCH-LOGICAL-c432t-4255120395498801b6d4da70575cb8f47474dbb3e7057e518bb50be3f8b111863
container_end_page 2111
container_issue 9
container_start_page 2098
container_title IEEE transactions on pattern analysis and machine intelligence
container_volume 41
creator Pillonetto, Gianluigi
Schenato, Luca
Varagnolo, Damiano
description We consider the problem of distributedly estimating Gaussian processes in multi-agent frameworks. Each agent collects few measurements and aims to collaboratively reconstruct a common estimate based on all data. Agents are assumed with limited computational and communication capabilities and to gather MM noisy measurements in total on input locations independently drawn from a known common probability density. The optimal solution would require agents to exchange all the MM input locations and measurements and then invert an M \times MM×M matrix, a non-scalable task. Differently, we propose two suboptimal approaches using the first EE orthonormal eigenfunctions obtained from the Karhunen-Loève (KL) expansion of the chosen kernel, where typically E\ll ME≪M. The benefits are that the computation and communication complexities scale with EE and not with MM, and computing the required statistics can be performed via standard average consensus algorithms. We obtain probabilistic non-asymptotic bounds that determine a priori the desired level of estimation accuracy, and new distributed strategies relying on Stein's unbiased risk estimate (SURE) paradigms for tuning the regularization parameters and applicable to generic basis functions (thus not necessarily kernel eigenfunctions) and that can again be implemented via average consensus. The proposed estimators and bounds are finally tested on both synthetic and real field data.
doi_str_mv 10.1109/TPAMI.2018.2836422
format article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_ltu_69896</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8387507</ieee_id><sourcerecordid>2269690994</sourcerecordid><originalsourceid>FETCH-LOGICAL-c432t-4255120395498801b6d4da70575cb8f47474dbb3e7057e518bb50be3f8b111863</originalsourceid><addsrcrecordid>eNpdkU1vEzEQhi0EoqHwB0BCK3HhwAaPvfbax1VDS6VWfKhwtezsJHK12U39wce_x0tCDsgHe2aeGb2el5CXQJcAVL-_-9zdXi8ZBbVkisuGsUdkAZrrmguuH5MFBclqpZg6I89ivKcUGkH5U3LGtNaNFLAgX1Y-puBdTthXt3lIvu62OKbqyuYYvR2rr7gNWJ7TWP3wtrr0o09Yr_wOxzlph6rb78P0y-9sKnF8Tp5s7BDxxfE-J98uP9xdfKxvPl1dX3Q39brhLNUNEwIY5Vo0WikKTvZNb1sqWrF2atO05fTOcZxTKEA5J6hDvlEOAJTk5-TdYW78ifvszD4UBeG3maw3K_-9M1PYmiFlI7XSM_72gBetDxljMjsf1zgMdsQpR8OoVLyIAijom__Q-ymH8tNCMamlpmV7hWIHah2mGANuTgqAmtkf89cfM_tjjv6UptfH0dntsD-1_DOkAK8OgEfEU1lx1Qra8j8Ms5NU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2269690994</pqid></control><display><type>article</type><title>Distributed Multi-Agent Gaussian Regression via Finite-Dimensional Approximations</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Pillonetto, Gianluigi ; Schenato, Luca ; Varagnolo, Damiano</creator><creatorcontrib>Pillonetto, Gianluigi ; Schenato, Luca ; Varagnolo, Damiano</creatorcontrib><description>We consider the problem of distributedly estimating Gaussian processes in multi-agent frameworks. Each agent collects few measurements and aims to collaboratively reconstruct a common estimate based on all data. Agents are assumed with limited computational and communication capabilities and to gather MM noisy measurements in total on input locations independently drawn from a known common probability density. The optimal solution would require agents to exchange all the MM input locations and measurements and then invert an M \times MM×M matrix, a non-scalable task. Differently, we propose two suboptimal approaches using the first EE orthonormal eigenfunctions obtained from the Karhunen-Loève (KL) expansion of the chosen kernel, where typically E\ll ME≪M. The benefits are that the computation and communication complexities scale with EE and not with MM, and computing the required statistics can be performed via standard average consensus algorithms. We obtain probabilistic non-asymptotic bounds that determine a priori the desired level of estimation accuracy, and new distributed strategies relying on Stein's unbiased risk estimate (SURE) paradigms for tuning the regularization parameters and applicable to generic basis functions (thus not necessarily kernel eigenfunctions) and that can again be implemented via average consensus. The proposed estimators and bounds are finally tested on both synthetic and real field data.</description><identifier>ISSN: 0162-8828</identifier><identifier>ISSN: 1939-3539</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2018.2836422</identifier><identifier>PMID: 29994651</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; average consensus ; Basis functions ; Bayes methods ; Complexity theory ; Control Engineering ; distributed estimation ; Eigenvalues and eigenfunctions ; Eigenvectors ; Estimation ; Gaussian process ; Gaussian processes ; Kernel ; kernel-based regularization ; Kernels ; Multiagent systems ; Noise measurement ; nonparametric estimation ; Nonparametric statistics ; Reglerteknik ; Regularization ; sensor networks ; Statistical analysis</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2019-09, Vol.41 (9), p.2098-2111</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c432t-4255120395498801b6d4da70575cb8f47474dbb3e7057e518bb50be3f8b111863</citedby><cites>FETCH-LOGICAL-c432t-4255120395498801b6d4da70575cb8f47474dbb3e7057e518bb50be3f8b111863</cites><orcidid>0000-0002-1072-3144 ; 0000-0002-4310-7938 ; 0000-0003-2544-2553</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8387507$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29994651$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-69896$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Pillonetto, Gianluigi</creatorcontrib><creatorcontrib>Schenato, Luca</creatorcontrib><creatorcontrib>Varagnolo, Damiano</creatorcontrib><title>Distributed Multi-Agent Gaussian Regression via Finite-Dimensional Approximations</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>We consider the problem of distributedly estimating Gaussian processes in multi-agent frameworks. Each agent collects few measurements and aims to collaboratively reconstruct a common estimate based on all data. Agents are assumed with limited computational and communication capabilities and to gather MM noisy measurements in total on input locations independently drawn from a known common probability density. The optimal solution would require agents to exchange all the MM input locations and measurements and then invert an M \times MM×M matrix, a non-scalable task. Differently, we propose two suboptimal approaches using the first EE orthonormal eigenfunctions obtained from the Karhunen-Loève (KL) expansion of the chosen kernel, where typically E\ll ME≪M. The benefits are that the computation and communication complexities scale with EE and not with MM, and computing the required statistics can be performed via standard average consensus algorithms. We obtain probabilistic non-asymptotic bounds that determine a priori the desired level of estimation accuracy, and new distributed strategies relying on Stein's unbiased risk estimate (SURE) paradigms for tuning the regularization parameters and applicable to generic basis functions (thus not necessarily kernel eigenfunctions) and that can again be implemented via average consensus. The proposed estimators and bounds are finally tested on both synthetic and real field data.</description><subject>Algorithms</subject><subject>average consensus</subject><subject>Basis functions</subject><subject>Bayes methods</subject><subject>Complexity theory</subject><subject>Control Engineering</subject><subject>distributed estimation</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Eigenvectors</subject><subject>Estimation</subject><subject>Gaussian process</subject><subject>Gaussian processes</subject><subject>Kernel</subject><subject>kernel-based regularization</subject><subject>Kernels</subject><subject>Multiagent systems</subject><subject>Noise measurement</subject><subject>nonparametric estimation</subject><subject>Nonparametric statistics</subject><subject>Reglerteknik</subject><subject>Regularization</subject><subject>sensor networks</subject><subject>Statistical analysis</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><recordid>eNpdkU1vEzEQhi0EoqHwB0BCK3HhwAaPvfbax1VDS6VWfKhwtezsJHK12U39wce_x0tCDsgHe2aeGb2el5CXQJcAVL-_-9zdXi8ZBbVkisuGsUdkAZrrmguuH5MFBclqpZg6I89ivKcUGkH5U3LGtNaNFLAgX1Y-puBdTthXt3lIvu62OKbqyuYYvR2rr7gNWJ7TWP3wtrr0o09Yr_wOxzlph6rb78P0y-9sKnF8Tp5s7BDxxfE-J98uP9xdfKxvPl1dX3Q39brhLNUNEwIY5Vo0WikKTvZNb1sqWrF2atO05fTOcZxTKEA5J6hDvlEOAJTk5-TdYW78ifvszD4UBeG3maw3K_-9M1PYmiFlI7XSM_72gBetDxljMjsf1zgMdsQpR8OoVLyIAijom__Q-ymH8tNCMamlpmV7hWIHah2mGANuTgqAmtkf89cfM_tjjv6UptfH0dntsD-1_DOkAK8OgEfEU1lx1Qra8j8Ms5NU</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Pillonetto, Gianluigi</creator><creator>Schenato, Luca</creator><creator>Varagnolo, Damiano</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>ADTPV</scope><scope>AOWAS</scope><orcidid>https://orcid.org/0000-0002-1072-3144</orcidid><orcidid>https://orcid.org/0000-0002-4310-7938</orcidid><orcidid>https://orcid.org/0000-0003-2544-2553</orcidid></search><sort><creationdate>20190901</creationdate><title>Distributed Multi-Agent Gaussian Regression via Finite-Dimensional Approximations</title><author>Pillonetto, Gianluigi ; Schenato, Luca ; Varagnolo, Damiano</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c432t-4255120395498801b6d4da70575cb8f47474dbb3e7057e518bb50be3f8b111863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>average consensus</topic><topic>Basis functions</topic><topic>Bayes methods</topic><topic>Complexity theory</topic><topic>Control Engineering</topic><topic>distributed estimation</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Eigenvectors</topic><topic>Estimation</topic><topic>Gaussian process</topic><topic>Gaussian processes</topic><topic>Kernel</topic><topic>kernel-based regularization</topic><topic>Kernels</topic><topic>Multiagent systems</topic><topic>Noise measurement</topic><topic>nonparametric estimation</topic><topic>Nonparametric statistics</topic><topic>Reglerteknik</topic><topic>Regularization</topic><topic>sensor networks</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pillonetto, Gianluigi</creatorcontrib><creatorcontrib>Schenato, Luca</creatorcontrib><creatorcontrib>Varagnolo, Damiano</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>SwePub</collection><collection>SwePub Articles</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pillonetto, Gianluigi</au><au>Schenato, Luca</au><au>Varagnolo, Damiano</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distributed Multi-Agent Gaussian Regression via Finite-Dimensional Approximations</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2019-09-01</date><risdate>2019</risdate><volume>41</volume><issue>9</issue><spage>2098</spage><epage>2111</epage><pages>2098-2111</pages><issn>0162-8828</issn><issn>1939-3539</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>We consider the problem of distributedly estimating Gaussian processes in multi-agent frameworks. Each agent collects few measurements and aims to collaboratively reconstruct a common estimate based on all data. Agents are assumed with limited computational and communication capabilities and to gather MM noisy measurements in total on input locations independently drawn from a known common probability density. The optimal solution would require agents to exchange all the MM input locations and measurements and then invert an M \times MM×M matrix, a non-scalable task. Differently, we propose two suboptimal approaches using the first EE orthonormal eigenfunctions obtained from the Karhunen-Loève (KL) expansion of the chosen kernel, where typically E\ll ME≪M. The benefits are that the computation and communication complexities scale with EE and not with MM, and computing the required statistics can be performed via standard average consensus algorithms. We obtain probabilistic non-asymptotic bounds that determine a priori the desired level of estimation accuracy, and new distributed strategies relying on Stein's unbiased risk estimate (SURE) paradigms for tuning the regularization parameters and applicable to generic basis functions (thus not necessarily kernel eigenfunctions) and that can again be implemented via average consensus. The proposed estimators and bounds are finally tested on both synthetic and real field data.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>29994651</pmid><doi>10.1109/TPAMI.2018.2836422</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-1072-3144</orcidid><orcidid>https://orcid.org/0000-0002-4310-7938</orcidid><orcidid>https://orcid.org/0000-0003-2544-2553</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0162-8828
ispartof IEEE transactions on pattern analysis and machine intelligence, 2019-09, Vol.41 (9), p.2098-2111
issn 0162-8828
1939-3539
1939-3539
2160-9292
language eng
recordid cdi_swepub_primary_oai_DiVA_org_ltu_69896
source IEEE Electronic Library (IEL) Journals
subjects Algorithms
average consensus
Basis functions
Bayes methods
Complexity theory
Control Engineering
distributed estimation
Eigenvalues and eigenfunctions
Eigenvectors
Estimation
Gaussian process
Gaussian processes
Kernel
kernel-based regularization
Kernels
Multiagent systems
Noise measurement
nonparametric estimation
Nonparametric statistics
Reglerteknik
Regularization
sensor networks
Statistical analysis
title Distributed Multi-Agent Gaussian Regression via Finite-Dimensional Approximations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T22%3A47%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distributed%20Multi-Agent%20Gaussian%20Regression%20via%20Finite-Dimensional%20Approximations&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Pillonetto,%20Gianluigi&rft.date=2019-09-01&rft.volume=41&rft.issue=9&rft.spage=2098&rft.epage=2111&rft.pages=2098-2111&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2018.2836422&rft_dat=%3Cproquest_swepu%3E2269690994%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c432t-4255120395498801b6d4da70575cb8f47474dbb3e7057e518bb50be3f8b111863%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2269690994&rft_id=info:pmid/29994651&rft_ieee_id=8387507&rfr_iscdi=true