Loading…
Distributed Multi-Agent Gaussian Regression via Finite-Dimensional Approximations
We consider the problem of distributedly estimating Gaussian processes in multi-agent frameworks. Each agent collects few measurements and aims to collaboratively reconstruct a common estimate based on all data. Agents are assumed with limited computational and communication capabilities and to gath...
Saved in:
Published in: | IEEE transactions on pattern analysis and machine intelligence 2019-09, Vol.41 (9), p.2098-2111 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c432t-4255120395498801b6d4da70575cb8f47474dbb3e7057e518bb50be3f8b111863 |
---|---|
cites | cdi_FETCH-LOGICAL-c432t-4255120395498801b6d4da70575cb8f47474dbb3e7057e518bb50be3f8b111863 |
container_end_page | 2111 |
container_issue | 9 |
container_start_page | 2098 |
container_title | IEEE transactions on pattern analysis and machine intelligence |
container_volume | 41 |
creator | Pillonetto, Gianluigi Schenato, Luca Varagnolo, Damiano |
description | We consider the problem of distributedly estimating Gaussian processes in multi-agent frameworks. Each agent collects few measurements and aims to collaboratively reconstruct a common estimate based on all data. Agents are assumed with limited computational and communication capabilities and to gather MM noisy measurements in total on input locations independently drawn from a known common probability density. The optimal solution would require agents to exchange all the MM input locations and measurements and then invert an M \times MM×M matrix, a non-scalable task. Differently, we propose two suboptimal approaches using the first EE orthonormal eigenfunctions obtained from the Karhunen-Loève (KL) expansion of the chosen kernel, where typically E\ll ME≪M. The benefits are that the computation and communication complexities scale with EE and not with MM, and computing the required statistics can be performed via standard average consensus algorithms. We obtain probabilistic non-asymptotic bounds that determine a priori the desired level of estimation accuracy, and new distributed strategies relying on Stein's unbiased risk estimate (SURE) paradigms for tuning the regularization parameters and applicable to generic basis functions (thus not necessarily kernel eigenfunctions) and that can again be implemented via average consensus. The proposed estimators and bounds are finally tested on both synthetic and real field data. |
doi_str_mv | 10.1109/TPAMI.2018.2836422 |
format | article |
fullrecord | <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_ltu_69896</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8387507</ieee_id><sourcerecordid>2269690994</sourcerecordid><originalsourceid>FETCH-LOGICAL-c432t-4255120395498801b6d4da70575cb8f47474dbb3e7057e518bb50be3f8b111863</originalsourceid><addsrcrecordid>eNpdkU1vEzEQhi0EoqHwB0BCK3HhwAaPvfbax1VDS6VWfKhwtezsJHK12U39wce_x0tCDsgHe2aeGb2el5CXQJcAVL-_-9zdXi8ZBbVkisuGsUdkAZrrmguuH5MFBclqpZg6I89ivKcUGkH5U3LGtNaNFLAgX1Y-puBdTthXt3lIvu62OKbqyuYYvR2rr7gNWJ7TWP3wtrr0o09Yr_wOxzlph6rb78P0y-9sKnF8Tp5s7BDxxfE-J98uP9xdfKxvPl1dX3Q39brhLNUNEwIY5Vo0WikKTvZNb1sqWrF2atO05fTOcZxTKEA5J6hDvlEOAJTk5-TdYW78ifvszD4UBeG3maw3K_-9M1PYmiFlI7XSM_72gBetDxljMjsf1zgMdsQpR8OoVLyIAijom__Q-ymH8tNCMamlpmV7hWIHah2mGANuTgqAmtkf89cfM_tjjv6UptfH0dntsD-1_DOkAK8OgEfEU1lx1Qra8j8Ms5NU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2269690994</pqid></control><display><type>article</type><title>Distributed Multi-Agent Gaussian Regression via Finite-Dimensional Approximations</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Pillonetto, Gianluigi ; Schenato, Luca ; Varagnolo, Damiano</creator><creatorcontrib>Pillonetto, Gianluigi ; Schenato, Luca ; Varagnolo, Damiano</creatorcontrib><description>We consider the problem of distributedly estimating Gaussian processes in multi-agent frameworks. Each agent collects few measurements and aims to collaboratively reconstruct a common estimate based on all data. Agents are assumed with limited computational and communication capabilities and to gather MM noisy measurements in total on input locations independently drawn from a known common probability density. The optimal solution would require agents to exchange all the MM input locations and measurements and then invert an M \times MM×M matrix, a non-scalable task. Differently, we propose two suboptimal approaches using the first EE orthonormal eigenfunctions obtained from the Karhunen-Loève (KL) expansion of the chosen kernel, where typically E\ll ME≪M. The benefits are that the computation and communication complexities scale with EE and not with MM, and computing the required statistics can be performed via standard average consensus algorithms. We obtain probabilistic non-asymptotic bounds that determine a priori the desired level of estimation accuracy, and new distributed strategies relying on Stein's unbiased risk estimate (SURE) paradigms for tuning the regularization parameters and applicable to generic basis functions (thus not necessarily kernel eigenfunctions) and that can again be implemented via average consensus. The proposed estimators and bounds are finally tested on both synthetic and real field data.</description><identifier>ISSN: 0162-8828</identifier><identifier>ISSN: 1939-3539</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2018.2836422</identifier><identifier>PMID: 29994651</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; average consensus ; Basis functions ; Bayes methods ; Complexity theory ; Control Engineering ; distributed estimation ; Eigenvalues and eigenfunctions ; Eigenvectors ; Estimation ; Gaussian process ; Gaussian processes ; Kernel ; kernel-based regularization ; Kernels ; Multiagent systems ; Noise measurement ; nonparametric estimation ; Nonparametric statistics ; Reglerteknik ; Regularization ; sensor networks ; Statistical analysis</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2019-09, Vol.41 (9), p.2098-2111</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c432t-4255120395498801b6d4da70575cb8f47474dbb3e7057e518bb50be3f8b111863</citedby><cites>FETCH-LOGICAL-c432t-4255120395498801b6d4da70575cb8f47474dbb3e7057e518bb50be3f8b111863</cites><orcidid>0000-0002-1072-3144 ; 0000-0002-4310-7938 ; 0000-0003-2544-2553</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8387507$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29994651$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-69896$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Pillonetto, Gianluigi</creatorcontrib><creatorcontrib>Schenato, Luca</creatorcontrib><creatorcontrib>Varagnolo, Damiano</creatorcontrib><title>Distributed Multi-Agent Gaussian Regression via Finite-Dimensional Approximations</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>We consider the problem of distributedly estimating Gaussian processes in multi-agent frameworks. Each agent collects few measurements and aims to collaboratively reconstruct a common estimate based on all data. Agents are assumed with limited computational and communication capabilities and to gather MM noisy measurements in total on input locations independently drawn from a known common probability density. The optimal solution would require agents to exchange all the MM input locations and measurements and then invert an M \times MM×M matrix, a non-scalable task. Differently, we propose two suboptimal approaches using the first EE orthonormal eigenfunctions obtained from the Karhunen-Loève (KL) expansion of the chosen kernel, where typically E\ll ME≪M. The benefits are that the computation and communication complexities scale with EE and not with MM, and computing the required statistics can be performed via standard average consensus algorithms. We obtain probabilistic non-asymptotic bounds that determine a priori the desired level of estimation accuracy, and new distributed strategies relying on Stein's unbiased risk estimate (SURE) paradigms for tuning the regularization parameters and applicable to generic basis functions (thus not necessarily kernel eigenfunctions) and that can again be implemented via average consensus. The proposed estimators and bounds are finally tested on both synthetic and real field data.</description><subject>Algorithms</subject><subject>average consensus</subject><subject>Basis functions</subject><subject>Bayes methods</subject><subject>Complexity theory</subject><subject>Control Engineering</subject><subject>distributed estimation</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Eigenvectors</subject><subject>Estimation</subject><subject>Gaussian process</subject><subject>Gaussian processes</subject><subject>Kernel</subject><subject>kernel-based regularization</subject><subject>Kernels</subject><subject>Multiagent systems</subject><subject>Noise measurement</subject><subject>nonparametric estimation</subject><subject>Nonparametric statistics</subject><subject>Reglerteknik</subject><subject>Regularization</subject><subject>sensor networks</subject><subject>Statistical analysis</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><recordid>eNpdkU1vEzEQhi0EoqHwB0BCK3HhwAaPvfbax1VDS6VWfKhwtezsJHK12U39wce_x0tCDsgHe2aeGb2el5CXQJcAVL-_-9zdXi8ZBbVkisuGsUdkAZrrmguuH5MFBclqpZg6I89ivKcUGkH5U3LGtNaNFLAgX1Y-puBdTthXt3lIvu62OKbqyuYYvR2rr7gNWJ7TWP3wtrr0o09Yr_wOxzlph6rb78P0y-9sKnF8Tp5s7BDxxfE-J98uP9xdfKxvPl1dX3Q39brhLNUNEwIY5Vo0WikKTvZNb1sqWrF2atO05fTOcZxTKEA5J6hDvlEOAJTk5-TdYW78ifvszD4UBeG3maw3K_-9M1PYmiFlI7XSM_72gBetDxljMjsf1zgMdsQpR8OoVLyIAijom__Q-ymH8tNCMamlpmV7hWIHah2mGANuTgqAmtkf89cfM_tjjv6UptfH0dntsD-1_DOkAK8OgEfEU1lx1Qra8j8Ms5NU</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Pillonetto, Gianluigi</creator><creator>Schenato, Luca</creator><creator>Varagnolo, Damiano</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>ADTPV</scope><scope>AOWAS</scope><orcidid>https://orcid.org/0000-0002-1072-3144</orcidid><orcidid>https://orcid.org/0000-0002-4310-7938</orcidid><orcidid>https://orcid.org/0000-0003-2544-2553</orcidid></search><sort><creationdate>20190901</creationdate><title>Distributed Multi-Agent Gaussian Regression via Finite-Dimensional Approximations</title><author>Pillonetto, Gianluigi ; Schenato, Luca ; Varagnolo, Damiano</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c432t-4255120395498801b6d4da70575cb8f47474dbb3e7057e518bb50be3f8b111863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>average consensus</topic><topic>Basis functions</topic><topic>Bayes methods</topic><topic>Complexity theory</topic><topic>Control Engineering</topic><topic>distributed estimation</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Eigenvectors</topic><topic>Estimation</topic><topic>Gaussian process</topic><topic>Gaussian processes</topic><topic>Kernel</topic><topic>kernel-based regularization</topic><topic>Kernels</topic><topic>Multiagent systems</topic><topic>Noise measurement</topic><topic>nonparametric estimation</topic><topic>Nonparametric statistics</topic><topic>Reglerteknik</topic><topic>Regularization</topic><topic>sensor networks</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pillonetto, Gianluigi</creatorcontrib><creatorcontrib>Schenato, Luca</creatorcontrib><creatorcontrib>Varagnolo, Damiano</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>SwePub</collection><collection>SwePub Articles</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pillonetto, Gianluigi</au><au>Schenato, Luca</au><au>Varagnolo, Damiano</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distributed Multi-Agent Gaussian Regression via Finite-Dimensional Approximations</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2019-09-01</date><risdate>2019</risdate><volume>41</volume><issue>9</issue><spage>2098</spage><epage>2111</epage><pages>2098-2111</pages><issn>0162-8828</issn><issn>1939-3539</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>We consider the problem of distributedly estimating Gaussian processes in multi-agent frameworks. Each agent collects few measurements and aims to collaboratively reconstruct a common estimate based on all data. Agents are assumed with limited computational and communication capabilities and to gather MM noisy measurements in total on input locations independently drawn from a known common probability density. The optimal solution would require agents to exchange all the MM input locations and measurements and then invert an M \times MM×M matrix, a non-scalable task. Differently, we propose two suboptimal approaches using the first EE orthonormal eigenfunctions obtained from the Karhunen-Loève (KL) expansion of the chosen kernel, where typically E\ll ME≪M. The benefits are that the computation and communication complexities scale with EE and not with MM, and computing the required statistics can be performed via standard average consensus algorithms. We obtain probabilistic non-asymptotic bounds that determine a priori the desired level of estimation accuracy, and new distributed strategies relying on Stein's unbiased risk estimate (SURE) paradigms for tuning the regularization parameters and applicable to generic basis functions (thus not necessarily kernel eigenfunctions) and that can again be implemented via average consensus. The proposed estimators and bounds are finally tested on both synthetic and real field data.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>29994651</pmid><doi>10.1109/TPAMI.2018.2836422</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-1072-3144</orcidid><orcidid>https://orcid.org/0000-0002-4310-7938</orcidid><orcidid>https://orcid.org/0000-0003-2544-2553</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0162-8828 |
ispartof | IEEE transactions on pattern analysis and machine intelligence, 2019-09, Vol.41 (9), p.2098-2111 |
issn | 0162-8828 1939-3539 1939-3539 2160-9292 |
language | eng |
recordid | cdi_swepub_primary_oai_DiVA_org_ltu_69896 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Algorithms average consensus Basis functions Bayes methods Complexity theory Control Engineering distributed estimation Eigenvalues and eigenfunctions Eigenvectors Estimation Gaussian process Gaussian processes Kernel kernel-based regularization Kernels Multiagent systems Noise measurement nonparametric estimation Nonparametric statistics Reglerteknik Regularization sensor networks Statistical analysis |
title | Distributed Multi-Agent Gaussian Regression via Finite-Dimensional Approximations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T22%3A47%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distributed%20Multi-Agent%20Gaussian%20Regression%20via%20Finite-Dimensional%20Approximations&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Pillonetto,%20Gianluigi&rft.date=2019-09-01&rft.volume=41&rft.issue=9&rft.spage=2098&rft.epage=2111&rft.pages=2098-2111&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2018.2836422&rft_dat=%3Cproquest_swepu%3E2269690994%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c432t-4255120395498801b6d4da70575cb8f47474dbb3e7057e518bb50be3f8b111863%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2269690994&rft_id=info:pmid/29994651&rft_ieee_id=8387507&rfr_iscdi=true |