Loading…
A novel approach for the production of green biosurfactant from Pseudomonas aeruginosa using renewable forest biomass
[Display omitted] •Petrol-based surfactants can be replaced by non-toxic, biodegradable alternatives.•Wood hydrolysates enable cheap and sustainable rhamnolipid (RL) production.•Lignocellulosic biomass has great potential as a carbon source for RL production.•With the use of birch hydrolysate, 2.34 ...
Saved in:
Published in: | The Science of the total environment 2020-04, Vol.711, p.135099-135099, Article 135099 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c408t-6cb5081298d388175964211080a0cb3a2efcbe0f065598732379c36b29363c673 |
---|---|
cites | cdi_FETCH-LOGICAL-c408t-6cb5081298d388175964211080a0cb3a2efcbe0f065598732379c36b29363c673 |
container_end_page | 135099 |
container_issue | |
container_start_page | 135099 |
container_title | The Science of the total environment |
container_volume | 711 |
creator | Hrůzová, Kateřina Patel, Alok Masák, Jan Maťátková, Olga Rova, Ulrika Christakopoulos, Paul Matsakas, Leonidas |
description | [Display omitted]
•Petrol-based surfactants can be replaced by non-toxic, biodegradable alternatives.•Wood hydrolysates enable cheap and sustainable rhamnolipid (RL) production.•Lignocellulosic biomass has great potential as a carbon source for RL production.•With the use of birch hydrolysate, 2.34 ± 0.17 g/L of RL was obtained after 96 h.•Cultivation on spruce hydrolysate resulted in 2.31 ± 0.10 g/L of RL after 96 h.
The rising demand for surfactants by the pharmaceuticals and cosmetic industries has generated vast amounts of petroleum-based synthetic surfactants, which are often toxic and non-degradable. Owing to their low toxicity, stability in extreme conditions, and biodegradability, biosurfactants could represent a sustainable alternative. The present study aimed to maximize the production of rhamnolipids (RL) from Pseudomonas aeruginosa by optimizing glucose concentration, temperature, and C/N and C/P ratios. After 96 h of cultivation at 37 °C, the final RL concentration was 4.18 ± 0.19 g/L with a final yield of 0.214 ± 0.010 g/gglucose when pure glucose was used as a carbon source. At present, the main obstacle towards commercialization of RL production is economic sustainability, due to the high cost of downstream processes and media components. For this reason, a renewable source such as wood hydrolysates (from birch and spruce woodchips) was examined here as a possible source of glucose for RL production. Both hydrolysates proved to be adequate, resulting in 2.34 ± 0.17 and 2.31 ± 0.10 g/L of RL, respectively, and corresponding yields of 0.081 ± 0.006 and 0.089 ± 0.004 g/gsugar after 96 h. These results demonstrate the potential of using renewable biomass for the production of biosurfactants and, to the best of our knowledge, they constitute the first report on the use of wood hydrolysates for RL production. |
doi_str_mv | 10.1016/j.scitotenv.2019.135099 |
format | article |
fullrecord | <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_ltu_76888</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0048969719350910</els_id><sourcerecordid>2350089739</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-6cb5081298d388175964211080a0cb3a2efcbe0f065598732379c36b29363c673</originalsourceid><addsrcrecordid>eNqFkUuPFCEURonROO3oX1CWLqyWRxePZWd8jMkkulC3hKJu9dCpghaKnvjvpVJjb4cNkJx7LtwPoXeUbCmh4uNxm52f4wzhvGWE6i3lLdH6GdpQJXVDCRPP0YaQnWq00PIKvcr5SOqSir5EV5zVI9-xDSp7HOIZRmxPpxStu8dDTHi-B1yvfXGzjwHHAR8SQMCdj7mkwbrZhhkPKU74R4bSxykGm7GFVA4-xGxxyT4ccIIAD7YbYbFCnhfBZHN-jV4Mdszw5nG_Rr--fP55c9vcff_67WZ_17gdUXMjXNcSRZlWPVeKylaLHaOUKGKJ67hlMLgOyEBE22olOeNSOy46prngTkh-jT6s3vwAp9KZU_KTTX9NtN588r_3JqaDGedipFBKVfz9ite__yn1vWby2cE42gCxZMPqkInSkuuKyhV1KeacYLi4KTFLROZoLhGZJSKzRlQr3z42Kd0E_aXufyYV2K8A1MmcPaRFBMFB7xO42fTRP9nkH5BHqF8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2350089739</pqid></control><display><type>article</type><title>A novel approach for the production of green biosurfactant from Pseudomonas aeruginosa using renewable forest biomass</title><source>ScienceDirect Journals</source><creator>Hrůzová, Kateřina ; Patel, Alok ; Masák, Jan ; Maťátková, Olga ; Rova, Ulrika ; Christakopoulos, Paul ; Matsakas, Leonidas</creator><creatorcontrib>Hrůzová, Kateřina ; Patel, Alok ; Masák, Jan ; Maťátková, Olga ; Rova, Ulrika ; Christakopoulos, Paul ; Matsakas, Leonidas</creatorcontrib><description>[Display omitted]
•Petrol-based surfactants can be replaced by non-toxic, biodegradable alternatives.•Wood hydrolysates enable cheap and sustainable rhamnolipid (RL) production.•Lignocellulosic biomass has great potential as a carbon source for RL production.•With the use of birch hydrolysate, 2.34 ± 0.17 g/L of RL was obtained after 96 h.•Cultivation on spruce hydrolysate resulted in 2.31 ± 0.10 g/L of RL after 96 h.
The rising demand for surfactants by the pharmaceuticals and cosmetic industries has generated vast amounts of petroleum-based synthetic surfactants, which are often toxic and non-degradable. Owing to their low toxicity, stability in extreme conditions, and biodegradability, biosurfactants could represent a sustainable alternative. The present study aimed to maximize the production of rhamnolipids (RL) from Pseudomonas aeruginosa by optimizing glucose concentration, temperature, and C/N and C/P ratios. After 96 h of cultivation at 37 °C, the final RL concentration was 4.18 ± 0.19 g/L with a final yield of 0.214 ± 0.010 g/gglucose when pure glucose was used as a carbon source. At present, the main obstacle towards commercialization of RL production is economic sustainability, due to the high cost of downstream processes and media components. For this reason, a renewable source such as wood hydrolysates (from birch and spruce woodchips) was examined here as a possible source of glucose for RL production. Both hydrolysates proved to be adequate, resulting in 2.34 ± 0.17 and 2.31 ± 0.10 g/L of RL, respectively, and corresponding yields of 0.081 ± 0.006 and 0.089 ± 0.004 g/gsugar after 96 h. These results demonstrate the potential of using renewable biomass for the production of biosurfactants and, to the best of our knowledge, they constitute the first report on the use of wood hydrolysates for RL production.</description><identifier>ISSN: 0048-9697</identifier><identifier>ISSN: 1879-1026</identifier><identifier>EISSN: 1879-1026</identifier><identifier>DOI: 10.1016/j.scitotenv.2019.135099</identifier><identifier>PMID: 32000342</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Biochemical Process Engineering ; Biokemisk processteknik ; Biomass ; Biosurfactants ; Forests ; Glycolipids ; Organosolv fractionation ; Petroleum ; Pseudomonas ; Pseudomonas aeruginosa ; Rhamnolipid ; Surface-Active Agents ; Wood hydrolysate</subject><ispartof>The Science of the total environment, 2020-04, Vol.711, p.135099-135099, Article 135099</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright © 2019 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-6cb5081298d388175964211080a0cb3a2efcbe0f065598732379c36b29363c673</citedby><cites>FETCH-LOGICAL-c408t-6cb5081298d388175964211080a0cb3a2efcbe0f065598732379c36b29363c673</cites><orcidid>0000-0002-1132-8947 ; 0000-0002-5285-1136</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32000342$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-76888$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Hrůzová, Kateřina</creatorcontrib><creatorcontrib>Patel, Alok</creatorcontrib><creatorcontrib>Masák, Jan</creatorcontrib><creatorcontrib>Maťátková, Olga</creatorcontrib><creatorcontrib>Rova, Ulrika</creatorcontrib><creatorcontrib>Christakopoulos, Paul</creatorcontrib><creatorcontrib>Matsakas, Leonidas</creatorcontrib><title>A novel approach for the production of green biosurfactant from Pseudomonas aeruginosa using renewable forest biomass</title><title>The Science of the total environment</title><addtitle>Sci Total Environ</addtitle><description>[Display omitted]
•Petrol-based surfactants can be replaced by non-toxic, biodegradable alternatives.•Wood hydrolysates enable cheap and sustainable rhamnolipid (RL) production.•Lignocellulosic biomass has great potential as a carbon source for RL production.•With the use of birch hydrolysate, 2.34 ± 0.17 g/L of RL was obtained after 96 h.•Cultivation on spruce hydrolysate resulted in 2.31 ± 0.10 g/L of RL after 96 h.
The rising demand for surfactants by the pharmaceuticals and cosmetic industries has generated vast amounts of petroleum-based synthetic surfactants, which are often toxic and non-degradable. Owing to their low toxicity, stability in extreme conditions, and biodegradability, biosurfactants could represent a sustainable alternative. The present study aimed to maximize the production of rhamnolipids (RL) from Pseudomonas aeruginosa by optimizing glucose concentration, temperature, and C/N and C/P ratios. After 96 h of cultivation at 37 °C, the final RL concentration was 4.18 ± 0.19 g/L with a final yield of 0.214 ± 0.010 g/gglucose when pure glucose was used as a carbon source. At present, the main obstacle towards commercialization of RL production is economic sustainability, due to the high cost of downstream processes and media components. For this reason, a renewable source such as wood hydrolysates (from birch and spruce woodchips) was examined here as a possible source of glucose for RL production. Both hydrolysates proved to be adequate, resulting in 2.34 ± 0.17 and 2.31 ± 0.10 g/L of RL, respectively, and corresponding yields of 0.081 ± 0.006 and 0.089 ± 0.004 g/gsugar after 96 h. These results demonstrate the potential of using renewable biomass for the production of biosurfactants and, to the best of our knowledge, they constitute the first report on the use of wood hydrolysates for RL production.</description><subject>Biochemical Process Engineering</subject><subject>Biokemisk processteknik</subject><subject>Biomass</subject><subject>Biosurfactants</subject><subject>Forests</subject><subject>Glycolipids</subject><subject>Organosolv fractionation</subject><subject>Petroleum</subject><subject>Pseudomonas</subject><subject>Pseudomonas aeruginosa</subject><subject>Rhamnolipid</subject><subject>Surface-Active Agents</subject><subject>Wood hydrolysate</subject><issn>0048-9697</issn><issn>1879-1026</issn><issn>1879-1026</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkUuPFCEURonROO3oX1CWLqyWRxePZWd8jMkkulC3hKJu9dCpghaKnvjvpVJjb4cNkJx7LtwPoXeUbCmh4uNxm52f4wzhvGWE6i3lLdH6GdpQJXVDCRPP0YaQnWq00PIKvcr5SOqSir5EV5zVI9-xDSp7HOIZRmxPpxStu8dDTHi-B1yvfXGzjwHHAR8SQMCdj7mkwbrZhhkPKU74R4bSxykGm7GFVA4-xGxxyT4ccIIAD7YbYbFCnhfBZHN-jV4Mdszw5nG_Rr--fP55c9vcff_67WZ_17gdUXMjXNcSRZlWPVeKylaLHaOUKGKJ67hlMLgOyEBE22olOeNSOy46prngTkh-jT6s3vwAp9KZU_KTTX9NtN588r_3JqaDGedipFBKVfz9ite__yn1vWby2cE42gCxZMPqkInSkuuKyhV1KeacYLi4KTFLROZoLhGZJSKzRlQr3z42Kd0E_aXufyYV2K8A1MmcPaRFBMFB7xO42fTRP9nkH5BHqF8</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Hrůzová, Kateřina</creator><creator>Patel, Alok</creator><creator>Masák, Jan</creator><creator>Maťátková, Olga</creator><creator>Rova, Ulrika</creator><creator>Christakopoulos, Paul</creator><creator>Matsakas, Leonidas</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>ADTPV</scope><scope>AOWAS</scope><orcidid>https://orcid.org/0000-0002-1132-8947</orcidid><orcidid>https://orcid.org/0000-0002-5285-1136</orcidid></search><sort><creationdate>20200401</creationdate><title>A novel approach for the production of green biosurfactant from Pseudomonas aeruginosa using renewable forest biomass</title><author>Hrůzová, Kateřina ; Patel, Alok ; Masák, Jan ; Maťátková, Olga ; Rova, Ulrika ; Christakopoulos, Paul ; Matsakas, Leonidas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-6cb5081298d388175964211080a0cb3a2efcbe0f065598732379c36b29363c673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biochemical Process Engineering</topic><topic>Biokemisk processteknik</topic><topic>Biomass</topic><topic>Biosurfactants</topic><topic>Forests</topic><topic>Glycolipids</topic><topic>Organosolv fractionation</topic><topic>Petroleum</topic><topic>Pseudomonas</topic><topic>Pseudomonas aeruginosa</topic><topic>Rhamnolipid</topic><topic>Surface-Active Agents</topic><topic>Wood hydrolysate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hrůzová, Kateřina</creatorcontrib><creatorcontrib>Patel, Alok</creatorcontrib><creatorcontrib>Masák, Jan</creatorcontrib><creatorcontrib>Maťátková, Olga</creatorcontrib><creatorcontrib>Rova, Ulrika</creatorcontrib><creatorcontrib>Christakopoulos, Paul</creatorcontrib><creatorcontrib>Matsakas, Leonidas</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>SwePub</collection><collection>SwePub Articles</collection><jtitle>The Science of the total environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hrůzová, Kateřina</au><au>Patel, Alok</au><au>Masák, Jan</au><au>Maťátková, Olga</au><au>Rova, Ulrika</au><au>Christakopoulos, Paul</au><au>Matsakas, Leonidas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel approach for the production of green biosurfactant from Pseudomonas aeruginosa using renewable forest biomass</atitle><jtitle>The Science of the total environment</jtitle><addtitle>Sci Total Environ</addtitle><date>2020-04-01</date><risdate>2020</risdate><volume>711</volume><spage>135099</spage><epage>135099</epage><pages>135099-135099</pages><artnum>135099</artnum><issn>0048-9697</issn><issn>1879-1026</issn><eissn>1879-1026</eissn><abstract>[Display omitted]
•Petrol-based surfactants can be replaced by non-toxic, biodegradable alternatives.•Wood hydrolysates enable cheap and sustainable rhamnolipid (RL) production.•Lignocellulosic biomass has great potential as a carbon source for RL production.•With the use of birch hydrolysate, 2.34 ± 0.17 g/L of RL was obtained after 96 h.•Cultivation on spruce hydrolysate resulted in 2.31 ± 0.10 g/L of RL after 96 h.
The rising demand for surfactants by the pharmaceuticals and cosmetic industries has generated vast amounts of petroleum-based synthetic surfactants, which are often toxic and non-degradable. Owing to their low toxicity, stability in extreme conditions, and biodegradability, biosurfactants could represent a sustainable alternative. The present study aimed to maximize the production of rhamnolipids (RL) from Pseudomonas aeruginosa by optimizing glucose concentration, temperature, and C/N and C/P ratios. After 96 h of cultivation at 37 °C, the final RL concentration was 4.18 ± 0.19 g/L with a final yield of 0.214 ± 0.010 g/gglucose when pure glucose was used as a carbon source. At present, the main obstacle towards commercialization of RL production is economic sustainability, due to the high cost of downstream processes and media components. For this reason, a renewable source such as wood hydrolysates (from birch and spruce woodchips) was examined here as a possible source of glucose for RL production. Both hydrolysates proved to be adequate, resulting in 2.34 ± 0.17 and 2.31 ± 0.10 g/L of RL, respectively, and corresponding yields of 0.081 ± 0.006 and 0.089 ± 0.004 g/gsugar after 96 h. These results demonstrate the potential of using renewable biomass for the production of biosurfactants and, to the best of our knowledge, they constitute the first report on the use of wood hydrolysates for RL production.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>32000342</pmid><doi>10.1016/j.scitotenv.2019.135099</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-1132-8947</orcidid><orcidid>https://orcid.org/0000-0002-5285-1136</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0048-9697 |
ispartof | The Science of the total environment, 2020-04, Vol.711, p.135099-135099, Article 135099 |
issn | 0048-9697 1879-1026 1879-1026 |
language | eng |
recordid | cdi_swepub_primary_oai_DiVA_org_ltu_76888 |
source | ScienceDirect Journals |
subjects | Biochemical Process Engineering Biokemisk processteknik Biomass Biosurfactants Forests Glycolipids Organosolv fractionation Petroleum Pseudomonas Pseudomonas aeruginosa Rhamnolipid Surface-Active Agents Wood hydrolysate |
title | A novel approach for the production of green biosurfactant from Pseudomonas aeruginosa using renewable forest biomass |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T19%3A39%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20approach%20for%20the%20production%20of%20green%20biosurfactant%20from%20Pseudomonas%20aeruginosa%20using%20renewable%20forest%20biomass&rft.jtitle=The%20Science%20of%20the%20total%20environment&rft.au=Hr%C5%AFzov%C3%A1,%20Kate%C5%99ina&rft.date=2020-04-01&rft.volume=711&rft.spage=135099&rft.epage=135099&rft.pages=135099-135099&rft.artnum=135099&rft.issn=0048-9697&rft.eissn=1879-1026&rft_id=info:doi/10.1016/j.scitotenv.2019.135099&rft_dat=%3Cproquest_swepu%3E2350089739%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-6cb5081298d388175964211080a0cb3a2efcbe0f065598732379c36b29363c673%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2350089739&rft_id=info:pmid/32000342&rfr_iscdi=true |