Loading…

A promising process to modify cellulose nanofibers for carbon dioxide (CO2) adsorption

[Display omitted] •Surface modification of CNF was performed using phthalimide.•Air nanofilter was made from modified CNF with high potentiality for CO2 adsorption.•Modified CNF had greater pores’ surface area with higher phthalimide fraction.•The CO2 adsorption was improved by increasing temperatur...

Full description

Saved in:
Bibliographic Details
Published in:Carbohydrate polymers 2020-02, Vol.230, p.115571-115571, Article 115571
Main Authors: Sepahvand, Sima, Jonoobi, Mehdi, Ashori, Alireza, Gauvin, Florent, Brouwers, H.J.H, Oksman, Kristiina, Yu, Qingliang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c486t-1d4f015fa2fb480f2d27972db0eba38c748f014281ac9b527ff55fba618f6cc13
cites cdi_FETCH-LOGICAL-c486t-1d4f015fa2fb480f2d27972db0eba38c748f014281ac9b527ff55fba618f6cc13
container_end_page 115571
container_issue
container_start_page 115571
container_title Carbohydrate polymers
container_volume 230
creator Sepahvand, Sima
Jonoobi, Mehdi
Ashori, Alireza
Gauvin, Florent
Brouwers, H.J.H
Oksman, Kristiina
Yu, Qingliang
description [Display omitted] •Surface modification of CNF was performed using phthalimide.•Air nanofilter was made from modified CNF with high potentiality for CO2 adsorption.•Modified CNF had greater pores’ surface area with higher phthalimide fraction.•The CO2 adsorption was improved by increasing temperature, humidity and pressure.•The drop of pressure in all samples was less than the Department of Energy Standard. A novel process of using phthalimide to modify cellulose nanofibers (CNF) for CO2 adsorption was studied. The effectiveness of the modification was confirmed by ATR-IR. Phthalimide incorporation onto CNF was confirmed with the characteristic peaks of NH2, C–N, and ester bonding COO− was observable. The XPS analyses confirmed the presence of N1s peak in Ph-CNF, meaning that the hydroxyl groups reacted with the amino groups (NH2) of phthalimide on the CNF surface. Based on the results, surface modification and addition of phthalimide increased the specific surface area, but also decreased the overall porosity, size of pores and volume of pores. When the temperature, humidity, pressure, and airflow rate increased, the CO2 adsorption significantly increased. The CO2 adsorption of phthalimide-modified CNF was confirmed by ATR-IR spectroscopy as the characteristic peaks of HCO3−,NH3+ and ester bonding NCOO− were visible on the spectra.
doi_str_mv 10.1016/j.carbpol.2019.115571
format article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_ltu_76954</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0144861719312391</els_id><sourcerecordid>2331624113</sourcerecordid><originalsourceid>FETCH-LOGICAL-c486t-1d4f015fa2fb480f2d27972db0eba38c748f014281ac9b527ff55fba618f6cc13</originalsourceid><addsrcrecordid>eNqFkU9P3DAQxa2KChbKRyjyEaRm8ThO4pzQamlLJSQulKvlv8irbBzspJRvj6NsuXYuHsm_mac3D6GvQNZAoL7erbWMagjdmhJo1wBV1cAntALetAWUjB2hFQHGCl5Dc4JOU9qRXDWQY3RSAs8YYyv0tMFDDHuffP88d9qmhMeA98F494a17bqpC8niXvbBeWVjwi5EPIuHHhsf_npj8eX2gV5haVKIw-hD_wV9drJL9vzwnqHfP74_bu-K-4efv7ab-0IzXo8FGOYIVE5SpxgnjhratA01ilglS64bxvM_oxykblVFG-eqyilZA3e11lCeoW_L3vRqh0mJIfq9jG8iSC9u_dNGhPgsunESTd1WLOOXC56dvkw2jSI7nz3K3oYpCVqWUFMGUGa0WlAdQ0rRuo_dQMScgNiJQwJiTkAsCeS5i4PEpPbWfEz9O3kGbhbA5rv88TaKpL3ttTU-Wj0KE_x_JN4Bby6aWw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2331624113</pqid></control><display><type>article</type><title>A promising process to modify cellulose nanofibers for carbon dioxide (CO2) adsorption</title><source>Elsevier</source><creator>Sepahvand, Sima ; Jonoobi, Mehdi ; Ashori, Alireza ; Gauvin, Florent ; Brouwers, H.J.H ; Oksman, Kristiina ; Yu, Qingliang</creator><creatorcontrib>Sepahvand, Sima ; Jonoobi, Mehdi ; Ashori, Alireza ; Gauvin, Florent ; Brouwers, H.J.H ; Oksman, Kristiina ; Yu, Qingliang</creatorcontrib><description>[Display omitted] •Surface modification of CNF was performed using phthalimide.•Air nanofilter was made from modified CNF with high potentiality for CO2 adsorption.•Modified CNF had greater pores’ surface area with higher phthalimide fraction.•The CO2 adsorption was improved by increasing temperature, humidity and pressure.•The drop of pressure in all samples was less than the Department of Energy Standard. A novel process of using phthalimide to modify cellulose nanofibers (CNF) for CO2 adsorption was studied. The effectiveness of the modification was confirmed by ATR-IR. Phthalimide incorporation onto CNF was confirmed with the characteristic peaks of NH2, C–N, and ester bonding COO− was observable. The XPS analyses confirmed the presence of N1s peak in Ph-CNF, meaning that the hydroxyl groups reacted with the amino groups (NH2) of phthalimide on the CNF surface. Based on the results, surface modification and addition of phthalimide increased the specific surface area, but also decreased the overall porosity, size of pores and volume of pores. When the temperature, humidity, pressure, and airflow rate increased, the CO2 adsorption significantly increased. The CO2 adsorption of phthalimide-modified CNF was confirmed by ATR-IR spectroscopy as the characteristic peaks of HCO3−,NH3+ and ester bonding NCOO− were visible on the spectra.</description><identifier>ISSN: 0144-8617</identifier><identifier>ISSN: 1879-1344</identifier><identifier>EISSN: 1879-1344</identifier><identifier>DOI: 10.1016/j.carbpol.2019.115571</identifier><identifier>PMID: 31887944</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Aerogels ; Cellulose nanofiber ; Chemical modification ; CO2 adsorption ; Trä och bionanokompositer ; Wood and Bionanocomposites</subject><ispartof>Carbohydrate polymers, 2020-02, Vol.230, p.115571-115571, Article 115571</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright © 2019 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c486t-1d4f015fa2fb480f2d27972db0eba38c748f014281ac9b527ff55fba618f6cc13</citedby><cites>FETCH-LOGICAL-c486t-1d4f015fa2fb480f2d27972db0eba38c748f014281ac9b527ff55fba618f6cc13</cites><orcidid>0000-0002-7640-1068 ; 0000-0001-8578-3945 ; 0000-0003-3590-175X ; 0000-0003-0946-1965 ; 0000-0003-4762-2854</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31887944$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-76954$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Sepahvand, Sima</creatorcontrib><creatorcontrib>Jonoobi, Mehdi</creatorcontrib><creatorcontrib>Ashori, Alireza</creatorcontrib><creatorcontrib>Gauvin, Florent</creatorcontrib><creatorcontrib>Brouwers, H.J.H</creatorcontrib><creatorcontrib>Oksman, Kristiina</creatorcontrib><creatorcontrib>Yu, Qingliang</creatorcontrib><title>A promising process to modify cellulose nanofibers for carbon dioxide (CO2) adsorption</title><title>Carbohydrate polymers</title><addtitle>Carbohydr Polym</addtitle><description>[Display omitted] •Surface modification of CNF was performed using phthalimide.•Air nanofilter was made from modified CNF with high potentiality for CO2 adsorption.•Modified CNF had greater pores’ surface area with higher phthalimide fraction.•The CO2 adsorption was improved by increasing temperature, humidity and pressure.•The drop of pressure in all samples was less than the Department of Energy Standard. A novel process of using phthalimide to modify cellulose nanofibers (CNF) for CO2 adsorption was studied. The effectiveness of the modification was confirmed by ATR-IR. Phthalimide incorporation onto CNF was confirmed with the characteristic peaks of NH2, C–N, and ester bonding COO− was observable. The XPS analyses confirmed the presence of N1s peak in Ph-CNF, meaning that the hydroxyl groups reacted with the amino groups (NH2) of phthalimide on the CNF surface. Based on the results, surface modification and addition of phthalimide increased the specific surface area, but also decreased the overall porosity, size of pores and volume of pores. When the temperature, humidity, pressure, and airflow rate increased, the CO2 adsorption significantly increased. The CO2 adsorption of phthalimide-modified CNF was confirmed by ATR-IR spectroscopy as the characteristic peaks of HCO3−,NH3+ and ester bonding NCOO− were visible on the spectra.</description><subject>Aerogels</subject><subject>Cellulose nanofiber</subject><subject>Chemical modification</subject><subject>CO2 adsorption</subject><subject>Trä och bionanokompositer</subject><subject>Wood and Bionanocomposites</subject><issn>0144-8617</issn><issn>1879-1344</issn><issn>1879-1344</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkU9P3DAQxa2KChbKRyjyEaRm8ThO4pzQamlLJSQulKvlv8irbBzspJRvj6NsuXYuHsm_mac3D6GvQNZAoL7erbWMagjdmhJo1wBV1cAntALetAWUjB2hFQHGCl5Dc4JOU9qRXDWQY3RSAs8YYyv0tMFDDHuffP88d9qmhMeA98F494a17bqpC8niXvbBeWVjwi5EPIuHHhsf_npj8eX2gV5haVKIw-hD_wV9drJL9vzwnqHfP74_bu-K-4efv7ab-0IzXo8FGOYIVE5SpxgnjhratA01ilglS64bxvM_oxykblVFG-eqyilZA3e11lCeoW_L3vRqh0mJIfq9jG8iSC9u_dNGhPgsunESTd1WLOOXC56dvkw2jSI7nz3K3oYpCVqWUFMGUGa0WlAdQ0rRuo_dQMScgNiJQwJiTkAsCeS5i4PEpPbWfEz9O3kGbhbA5rv88TaKpL3ttTU-Wj0KE_x_JN4Bby6aWw</recordid><startdate>20200215</startdate><enddate>20200215</enddate><creator>Sepahvand, Sima</creator><creator>Jonoobi, Mehdi</creator><creator>Ashori, Alireza</creator><creator>Gauvin, Florent</creator><creator>Brouwers, H.J.H</creator><creator>Oksman, Kristiina</creator><creator>Yu, Qingliang</creator><general>Elsevier Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>ADTPV</scope><scope>AOWAS</scope><orcidid>https://orcid.org/0000-0002-7640-1068</orcidid><orcidid>https://orcid.org/0000-0001-8578-3945</orcidid><orcidid>https://orcid.org/0000-0003-3590-175X</orcidid><orcidid>https://orcid.org/0000-0003-0946-1965</orcidid><orcidid>https://orcid.org/0000-0003-4762-2854</orcidid></search><sort><creationdate>20200215</creationdate><title>A promising process to modify cellulose nanofibers for carbon dioxide (CO2) adsorption</title><author>Sepahvand, Sima ; Jonoobi, Mehdi ; Ashori, Alireza ; Gauvin, Florent ; Brouwers, H.J.H ; Oksman, Kristiina ; Yu, Qingliang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c486t-1d4f015fa2fb480f2d27972db0eba38c748f014281ac9b527ff55fba618f6cc13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aerogels</topic><topic>Cellulose nanofiber</topic><topic>Chemical modification</topic><topic>CO2 adsorption</topic><topic>Trä och bionanokompositer</topic><topic>Wood and Bionanocomposites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sepahvand, Sima</creatorcontrib><creatorcontrib>Jonoobi, Mehdi</creatorcontrib><creatorcontrib>Ashori, Alireza</creatorcontrib><creatorcontrib>Gauvin, Florent</creatorcontrib><creatorcontrib>Brouwers, H.J.H</creatorcontrib><creatorcontrib>Oksman, Kristiina</creatorcontrib><creatorcontrib>Yu, Qingliang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>SwePub</collection><collection>SwePub Articles</collection><jtitle>Carbohydrate polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sepahvand, Sima</au><au>Jonoobi, Mehdi</au><au>Ashori, Alireza</au><au>Gauvin, Florent</au><au>Brouwers, H.J.H</au><au>Oksman, Kristiina</au><au>Yu, Qingliang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A promising process to modify cellulose nanofibers for carbon dioxide (CO2) adsorption</atitle><jtitle>Carbohydrate polymers</jtitle><addtitle>Carbohydr Polym</addtitle><date>2020-02-15</date><risdate>2020</risdate><volume>230</volume><spage>115571</spage><epage>115571</epage><pages>115571-115571</pages><artnum>115571</artnum><issn>0144-8617</issn><issn>1879-1344</issn><eissn>1879-1344</eissn><abstract>[Display omitted] •Surface modification of CNF was performed using phthalimide.•Air nanofilter was made from modified CNF with high potentiality for CO2 adsorption.•Modified CNF had greater pores’ surface area with higher phthalimide fraction.•The CO2 adsorption was improved by increasing temperature, humidity and pressure.•The drop of pressure in all samples was less than the Department of Energy Standard. A novel process of using phthalimide to modify cellulose nanofibers (CNF) for CO2 adsorption was studied. The effectiveness of the modification was confirmed by ATR-IR. Phthalimide incorporation onto CNF was confirmed with the characteristic peaks of NH2, C–N, and ester bonding COO− was observable. The XPS analyses confirmed the presence of N1s peak in Ph-CNF, meaning that the hydroxyl groups reacted with the amino groups (NH2) of phthalimide on the CNF surface. Based on the results, surface modification and addition of phthalimide increased the specific surface area, but also decreased the overall porosity, size of pores and volume of pores. When the temperature, humidity, pressure, and airflow rate increased, the CO2 adsorption significantly increased. The CO2 adsorption of phthalimide-modified CNF was confirmed by ATR-IR spectroscopy as the characteristic peaks of HCO3−,NH3+ and ester bonding NCOO− were visible on the spectra.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>31887944</pmid><doi>10.1016/j.carbpol.2019.115571</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-7640-1068</orcidid><orcidid>https://orcid.org/0000-0001-8578-3945</orcidid><orcidid>https://orcid.org/0000-0003-3590-175X</orcidid><orcidid>https://orcid.org/0000-0003-0946-1965</orcidid><orcidid>https://orcid.org/0000-0003-4762-2854</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0144-8617
ispartof Carbohydrate polymers, 2020-02, Vol.230, p.115571-115571, Article 115571
issn 0144-8617
1879-1344
1879-1344
language eng
recordid cdi_swepub_primary_oai_DiVA_org_ltu_76954
source Elsevier
subjects Aerogels
Cellulose nanofiber
Chemical modification
CO2 adsorption
Trä och bionanokompositer
Wood and Bionanocomposites
title A promising process to modify cellulose nanofibers for carbon dioxide (CO2) adsorption
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T10%3A03%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20promising%20process%20to%20modify%20cellulose%20nanofibers%20for%20carbon%20dioxide%20(CO2)%20adsorption&rft.jtitle=Carbohydrate%20polymers&rft.au=Sepahvand,%20Sima&rft.date=2020-02-15&rft.volume=230&rft.spage=115571&rft.epage=115571&rft.pages=115571-115571&rft.artnum=115571&rft.issn=0144-8617&rft.eissn=1879-1344&rft_id=info:doi/10.1016/j.carbpol.2019.115571&rft_dat=%3Cproquest_swepu%3E2331624113%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c486t-1d4f015fa2fb480f2d27972db0eba38c748f014281ac9b527ff55fba618f6cc13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2331624113&rft_id=info:pmid/31887944&rfr_iscdi=true