Loading…
A promising process to modify cellulose nanofibers for carbon dioxide (CO2) adsorption
[Display omitted] •Surface modification of CNF was performed using phthalimide.•Air nanofilter was made from modified CNF with high potentiality for CO2 adsorption.•Modified CNF had greater pores’ surface area with higher phthalimide fraction.•The CO2 adsorption was improved by increasing temperatur...
Saved in:
Published in: | Carbohydrate polymers 2020-02, Vol.230, p.115571-115571, Article 115571 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c486t-1d4f015fa2fb480f2d27972db0eba38c748f014281ac9b527ff55fba618f6cc13 |
---|---|
cites | cdi_FETCH-LOGICAL-c486t-1d4f015fa2fb480f2d27972db0eba38c748f014281ac9b527ff55fba618f6cc13 |
container_end_page | 115571 |
container_issue | |
container_start_page | 115571 |
container_title | Carbohydrate polymers |
container_volume | 230 |
creator | Sepahvand, Sima Jonoobi, Mehdi Ashori, Alireza Gauvin, Florent Brouwers, H.J.H Oksman, Kristiina Yu, Qingliang |
description | [Display omitted]
•Surface modification of CNF was performed using phthalimide.•Air nanofilter was made from modified CNF with high potentiality for CO2 adsorption.•Modified CNF had greater pores’ surface area with higher phthalimide fraction.•The CO2 adsorption was improved by increasing temperature, humidity and pressure.•The drop of pressure in all samples was less than the Department of Energy Standard.
A novel process of using phthalimide to modify cellulose nanofibers (CNF) for CO2 adsorption was studied. The effectiveness of the modification was confirmed by ATR-IR. Phthalimide incorporation onto CNF was confirmed with the characteristic peaks of NH2, C–N, and ester bonding COO− was observable. The XPS analyses confirmed the presence of N1s peak in Ph-CNF, meaning that the hydroxyl groups reacted with the amino groups (NH2) of phthalimide on the CNF surface. Based on the results, surface modification and addition of phthalimide increased the specific surface area, but also decreased the overall porosity, size of pores and volume of pores. When the temperature, humidity, pressure, and airflow rate increased, the CO2 adsorption significantly increased. The CO2 adsorption of phthalimide-modified CNF was confirmed by ATR-IR spectroscopy as the characteristic peaks of HCO3−,NH3+ and ester bonding NCOO− were visible on the spectra. |
doi_str_mv | 10.1016/j.carbpol.2019.115571 |
format | article |
fullrecord | <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_ltu_76954</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0144861719312391</els_id><sourcerecordid>2331624113</sourcerecordid><originalsourceid>FETCH-LOGICAL-c486t-1d4f015fa2fb480f2d27972db0eba38c748f014281ac9b527ff55fba618f6cc13</originalsourceid><addsrcrecordid>eNqFkU9P3DAQxa2KChbKRyjyEaRm8ThO4pzQamlLJSQulKvlv8irbBzspJRvj6NsuXYuHsm_mac3D6GvQNZAoL7erbWMagjdmhJo1wBV1cAntALetAWUjB2hFQHGCl5Dc4JOU9qRXDWQY3RSAs8YYyv0tMFDDHuffP88d9qmhMeA98F494a17bqpC8niXvbBeWVjwi5EPIuHHhsf_npj8eX2gV5haVKIw-hD_wV9drJL9vzwnqHfP74_bu-K-4efv7ab-0IzXo8FGOYIVE5SpxgnjhratA01ilglS64bxvM_oxykblVFG-eqyilZA3e11lCeoW_L3vRqh0mJIfq9jG8iSC9u_dNGhPgsunESTd1WLOOXC56dvkw2jSI7nz3K3oYpCVqWUFMGUGa0WlAdQ0rRuo_dQMScgNiJQwJiTkAsCeS5i4PEpPbWfEz9O3kGbhbA5rv88TaKpL3ttTU-Wj0KE_x_JN4Bby6aWw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2331624113</pqid></control><display><type>article</type><title>A promising process to modify cellulose nanofibers for carbon dioxide (CO2) adsorption</title><source>Elsevier</source><creator>Sepahvand, Sima ; Jonoobi, Mehdi ; Ashori, Alireza ; Gauvin, Florent ; Brouwers, H.J.H ; Oksman, Kristiina ; Yu, Qingliang</creator><creatorcontrib>Sepahvand, Sima ; Jonoobi, Mehdi ; Ashori, Alireza ; Gauvin, Florent ; Brouwers, H.J.H ; Oksman, Kristiina ; Yu, Qingliang</creatorcontrib><description>[Display omitted]
•Surface modification of CNF was performed using phthalimide.•Air nanofilter was made from modified CNF with high potentiality for CO2 adsorption.•Modified CNF had greater pores’ surface area with higher phthalimide fraction.•The CO2 adsorption was improved by increasing temperature, humidity and pressure.•The drop of pressure in all samples was less than the Department of Energy Standard.
A novel process of using phthalimide to modify cellulose nanofibers (CNF) for CO2 adsorption was studied. The effectiveness of the modification was confirmed by ATR-IR. Phthalimide incorporation onto CNF was confirmed with the characteristic peaks of NH2, C–N, and ester bonding COO− was observable. The XPS analyses confirmed the presence of N1s peak in Ph-CNF, meaning that the hydroxyl groups reacted with the amino groups (NH2) of phthalimide on the CNF surface. Based on the results, surface modification and addition of phthalimide increased the specific surface area, but also decreased the overall porosity, size of pores and volume of pores. When the temperature, humidity, pressure, and airflow rate increased, the CO2 adsorption significantly increased. The CO2 adsorption of phthalimide-modified CNF was confirmed by ATR-IR spectroscopy as the characteristic peaks of HCO3−,NH3+ and ester bonding NCOO− were visible on the spectra.</description><identifier>ISSN: 0144-8617</identifier><identifier>ISSN: 1879-1344</identifier><identifier>EISSN: 1879-1344</identifier><identifier>DOI: 10.1016/j.carbpol.2019.115571</identifier><identifier>PMID: 31887944</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Aerogels ; Cellulose nanofiber ; Chemical modification ; CO2 adsorption ; Trä och bionanokompositer ; Wood and Bionanocomposites</subject><ispartof>Carbohydrate polymers, 2020-02, Vol.230, p.115571-115571, Article 115571</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright © 2019 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c486t-1d4f015fa2fb480f2d27972db0eba38c748f014281ac9b527ff55fba618f6cc13</citedby><cites>FETCH-LOGICAL-c486t-1d4f015fa2fb480f2d27972db0eba38c748f014281ac9b527ff55fba618f6cc13</cites><orcidid>0000-0002-7640-1068 ; 0000-0001-8578-3945 ; 0000-0003-3590-175X ; 0000-0003-0946-1965 ; 0000-0003-4762-2854</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31887944$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-76954$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Sepahvand, Sima</creatorcontrib><creatorcontrib>Jonoobi, Mehdi</creatorcontrib><creatorcontrib>Ashori, Alireza</creatorcontrib><creatorcontrib>Gauvin, Florent</creatorcontrib><creatorcontrib>Brouwers, H.J.H</creatorcontrib><creatorcontrib>Oksman, Kristiina</creatorcontrib><creatorcontrib>Yu, Qingliang</creatorcontrib><title>A promising process to modify cellulose nanofibers for carbon dioxide (CO2) adsorption</title><title>Carbohydrate polymers</title><addtitle>Carbohydr Polym</addtitle><description>[Display omitted]
•Surface modification of CNF was performed using phthalimide.•Air nanofilter was made from modified CNF with high potentiality for CO2 adsorption.•Modified CNF had greater pores’ surface area with higher phthalimide fraction.•The CO2 adsorption was improved by increasing temperature, humidity and pressure.•The drop of pressure in all samples was less than the Department of Energy Standard.
A novel process of using phthalimide to modify cellulose nanofibers (CNF) for CO2 adsorption was studied. The effectiveness of the modification was confirmed by ATR-IR. Phthalimide incorporation onto CNF was confirmed with the characteristic peaks of NH2, C–N, and ester bonding COO− was observable. The XPS analyses confirmed the presence of N1s peak in Ph-CNF, meaning that the hydroxyl groups reacted with the amino groups (NH2) of phthalimide on the CNF surface. Based on the results, surface modification and addition of phthalimide increased the specific surface area, but also decreased the overall porosity, size of pores and volume of pores. When the temperature, humidity, pressure, and airflow rate increased, the CO2 adsorption significantly increased. The CO2 adsorption of phthalimide-modified CNF was confirmed by ATR-IR spectroscopy as the characteristic peaks of HCO3−,NH3+ and ester bonding NCOO− were visible on the spectra.</description><subject>Aerogels</subject><subject>Cellulose nanofiber</subject><subject>Chemical modification</subject><subject>CO2 adsorption</subject><subject>Trä och bionanokompositer</subject><subject>Wood and Bionanocomposites</subject><issn>0144-8617</issn><issn>1879-1344</issn><issn>1879-1344</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkU9P3DAQxa2KChbKRyjyEaRm8ThO4pzQamlLJSQulKvlv8irbBzspJRvj6NsuXYuHsm_mac3D6GvQNZAoL7erbWMagjdmhJo1wBV1cAntALetAWUjB2hFQHGCl5Dc4JOU9qRXDWQY3RSAs8YYyv0tMFDDHuffP88d9qmhMeA98F494a17bqpC8niXvbBeWVjwi5EPIuHHhsf_npj8eX2gV5haVKIw-hD_wV9drJL9vzwnqHfP74_bu-K-4efv7ab-0IzXo8FGOYIVE5SpxgnjhratA01ilglS64bxvM_oxykblVFG-eqyilZA3e11lCeoW_L3vRqh0mJIfq9jG8iSC9u_dNGhPgsunESTd1WLOOXC56dvkw2jSI7nz3K3oYpCVqWUFMGUGa0WlAdQ0rRuo_dQMScgNiJQwJiTkAsCeS5i4PEpPbWfEz9O3kGbhbA5rv88TaKpL3ttTU-Wj0KE_x_JN4Bby6aWw</recordid><startdate>20200215</startdate><enddate>20200215</enddate><creator>Sepahvand, Sima</creator><creator>Jonoobi, Mehdi</creator><creator>Ashori, Alireza</creator><creator>Gauvin, Florent</creator><creator>Brouwers, H.J.H</creator><creator>Oksman, Kristiina</creator><creator>Yu, Qingliang</creator><general>Elsevier Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>ADTPV</scope><scope>AOWAS</scope><orcidid>https://orcid.org/0000-0002-7640-1068</orcidid><orcidid>https://orcid.org/0000-0001-8578-3945</orcidid><orcidid>https://orcid.org/0000-0003-3590-175X</orcidid><orcidid>https://orcid.org/0000-0003-0946-1965</orcidid><orcidid>https://orcid.org/0000-0003-4762-2854</orcidid></search><sort><creationdate>20200215</creationdate><title>A promising process to modify cellulose nanofibers for carbon dioxide (CO2) adsorption</title><author>Sepahvand, Sima ; Jonoobi, Mehdi ; Ashori, Alireza ; Gauvin, Florent ; Brouwers, H.J.H ; Oksman, Kristiina ; Yu, Qingliang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c486t-1d4f015fa2fb480f2d27972db0eba38c748f014281ac9b527ff55fba618f6cc13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aerogels</topic><topic>Cellulose nanofiber</topic><topic>Chemical modification</topic><topic>CO2 adsorption</topic><topic>Trä och bionanokompositer</topic><topic>Wood and Bionanocomposites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sepahvand, Sima</creatorcontrib><creatorcontrib>Jonoobi, Mehdi</creatorcontrib><creatorcontrib>Ashori, Alireza</creatorcontrib><creatorcontrib>Gauvin, Florent</creatorcontrib><creatorcontrib>Brouwers, H.J.H</creatorcontrib><creatorcontrib>Oksman, Kristiina</creatorcontrib><creatorcontrib>Yu, Qingliang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>SwePub</collection><collection>SwePub Articles</collection><jtitle>Carbohydrate polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sepahvand, Sima</au><au>Jonoobi, Mehdi</au><au>Ashori, Alireza</au><au>Gauvin, Florent</au><au>Brouwers, H.J.H</au><au>Oksman, Kristiina</au><au>Yu, Qingliang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A promising process to modify cellulose nanofibers for carbon dioxide (CO2) adsorption</atitle><jtitle>Carbohydrate polymers</jtitle><addtitle>Carbohydr Polym</addtitle><date>2020-02-15</date><risdate>2020</risdate><volume>230</volume><spage>115571</spage><epage>115571</epage><pages>115571-115571</pages><artnum>115571</artnum><issn>0144-8617</issn><issn>1879-1344</issn><eissn>1879-1344</eissn><abstract>[Display omitted]
•Surface modification of CNF was performed using phthalimide.•Air nanofilter was made from modified CNF with high potentiality for CO2 adsorption.•Modified CNF had greater pores’ surface area with higher phthalimide fraction.•The CO2 adsorption was improved by increasing temperature, humidity and pressure.•The drop of pressure in all samples was less than the Department of Energy Standard.
A novel process of using phthalimide to modify cellulose nanofibers (CNF) for CO2 adsorption was studied. The effectiveness of the modification was confirmed by ATR-IR. Phthalimide incorporation onto CNF was confirmed with the characteristic peaks of NH2, C–N, and ester bonding COO− was observable. The XPS analyses confirmed the presence of N1s peak in Ph-CNF, meaning that the hydroxyl groups reacted with the amino groups (NH2) of phthalimide on the CNF surface. Based on the results, surface modification and addition of phthalimide increased the specific surface area, but also decreased the overall porosity, size of pores and volume of pores. When the temperature, humidity, pressure, and airflow rate increased, the CO2 adsorption significantly increased. The CO2 adsorption of phthalimide-modified CNF was confirmed by ATR-IR spectroscopy as the characteristic peaks of HCO3−,NH3+ and ester bonding NCOO− were visible on the spectra.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>31887944</pmid><doi>10.1016/j.carbpol.2019.115571</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-7640-1068</orcidid><orcidid>https://orcid.org/0000-0001-8578-3945</orcidid><orcidid>https://orcid.org/0000-0003-3590-175X</orcidid><orcidid>https://orcid.org/0000-0003-0946-1965</orcidid><orcidid>https://orcid.org/0000-0003-4762-2854</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0144-8617 |
ispartof | Carbohydrate polymers, 2020-02, Vol.230, p.115571-115571, Article 115571 |
issn | 0144-8617 1879-1344 1879-1344 |
language | eng |
recordid | cdi_swepub_primary_oai_DiVA_org_ltu_76954 |
source | Elsevier |
subjects | Aerogels Cellulose nanofiber Chemical modification CO2 adsorption Trä och bionanokompositer Wood and Bionanocomposites |
title | A promising process to modify cellulose nanofibers for carbon dioxide (CO2) adsorption |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T10%3A03%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20promising%20process%20to%20modify%20cellulose%20nanofibers%20for%20carbon%20dioxide%20(CO2)%20adsorption&rft.jtitle=Carbohydrate%20polymers&rft.au=Sepahvand,%20Sima&rft.date=2020-02-15&rft.volume=230&rft.spage=115571&rft.epage=115571&rft.pages=115571-115571&rft.artnum=115571&rft.issn=0144-8617&rft.eissn=1879-1344&rft_id=info:doi/10.1016/j.carbpol.2019.115571&rft_dat=%3Cproquest_swepu%3E2331624113%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c486t-1d4f015fa2fb480f2d27972db0eba38c748f014281ac9b527ff55fba618f6cc13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2331624113&rft_id=info:pmid/31887944&rfr_iscdi=true |