Loading…
Raman spectroscopy of natron: shedding light on ancient Egyptian mummification
The mummification ritual in ancient Egypt involved the evisceration of the corpse and its desiccation using natron, a naturally occurring evaporitic mineral deposit from the Wadi Natrun, Egypt. The deposit typically contains sodium carbonate, sodium bicarbonate and impurities of chloride and sulfate...
Saved in:
Published in: | Analytical and bioanalytical chemistry 2007-06, Vol.388 (3), p.683-689 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c418t-ca91e0bb911f5415b276efb3543b9677458cc886ca0508629468165bf395e4643 |
---|---|
cites | cdi_FETCH-LOGICAL-c418t-ca91e0bb911f5415b276efb3543b9677458cc886ca0508629468165bf395e4643 |
container_end_page | 689 |
container_issue | 3 |
container_start_page | 683 |
container_title | Analytical and bioanalytical chemistry |
container_volume | 388 |
creator | Edwards, Howell G. M Currie, Katherine J Ali, Hassan R. H Jorge Villar, Susana E David, A. Rosalie Denton, John |
description | The mummification ritual in ancient Egypt involved the evisceration of the corpse and its desiccation using natron, a naturally occurring evaporitic mineral deposit from the Wadi Natrun, Egypt. The deposit typically contains sodium carbonate, sodium bicarbonate and impurities of chloride and sulfate as its major elemental components. It is believed that the function of the natron was to rapidly remove the water from the cadaver to prevent microbial attack associated with subsequent biological tissue degradation and putrefaction. Several specimens of natron that were recently collected from the Wadi Natrun contained coloured zones interspersed with the mineral matrix that are superficially reminiscent of extremophilic cyanobacterial colonisation found elsewhere in hot and cold deserts. Raman spectroscopy of these specimens using visible and near-infrared laser excitation has revealed not only the mineral composition of the natron, but also evidence for the presence of cyanobacterial colonies in several coloured zones observed in the mineral matrix. Key Raman biosignatures of carotenoids, scytonemin and chlorophyll have been identified. [graphic removed] |
doi_str_mv | 10.1007/s00216-007-1249-4 |
format | article |
fullrecord | <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_ltu_8295</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70457620</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-ca91e0bb911f5415b276efb3543b9677458cc886ca0508629468165bf395e4643</originalsourceid><addsrcrecordid>eNqFkV9r1UAQxYNYbK1-AF80IPgiqTOb_etbqdUWioJaX5fN3k26JdlNswlyv70bcqngi09zBn5zmJlTFK8QzhBAfEgABHmVZYWEqoo-KU6Qo6wIZ_D0UVNyXDxP6R4AmUT-rDhGQYEKZCfF1-9mMKFMo7PzFJON476MbRlM7sLHMt253c6Hrux9dzeXMZQmWO_CXF52-3H2eXRYhsG33prZx_CiOGpNn9zLQz0tbj9f_ry4qm6-fbm-OL-pLEU5V9YodNA0CrFlFFlDBHdtUzNaN4oLQZm0VkpuDTCQnCjK8-KsaWvFHOW0Pi3eb77ptxuXRo-TH8y019F4_cn_Otdx6nQ_L1oSxTL9bqPHKT4sLs168Mm6vjfBxSVpAZQJTuC_IFEKELHO4Nt_wPu4TCGfrAnnHKjkarXDjbL5tWly7eOeCHpNUG8J6lWuCer1stcH56UZ3O7vxCGyDLzZgNZEbbrJJ337gwDW2USQ_Kz6DyysniU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2666048690</pqid></control><display><type>article</type><title>Raman spectroscopy of natron: shedding light on ancient Egyptian mummification</title><source>Springer Nature</source><creator>Edwards, Howell G. M ; Currie, Katherine J ; Ali, Hassan R. H ; Jorge Villar, Susana E ; David, A. Rosalie ; Denton, John</creator><creatorcontrib>Edwards, Howell G. M ; Currie, Katherine J ; Ali, Hassan R. H ; Jorge Villar, Susana E ; David, A. Rosalie ; Denton, John</creatorcontrib><description>The mummification ritual in ancient Egypt involved the evisceration of the corpse and its desiccation using natron, a naturally occurring evaporitic mineral deposit from the Wadi Natrun, Egypt. The deposit typically contains sodium carbonate, sodium bicarbonate and impurities of chloride and sulfate as its major elemental components. It is believed that the function of the natron was to rapidly remove the water from the cadaver to prevent microbial attack associated with subsequent biological tissue degradation and putrefaction. Several specimens of natron that were recently collected from the Wadi Natrun contained coloured zones interspersed with the mineral matrix that are superficially reminiscent of extremophilic cyanobacterial colonisation found elsewhere in hot and cold deserts. Raman spectroscopy of these specimens using visible and near-infrared laser excitation has revealed not only the mineral composition of the natron, but also evidence for the presence of cyanobacterial colonies in several coloured zones observed in the mineral matrix. Key Raman biosignatures of carotenoids, scytonemin and chlorophyll have been identified. [graphic removed]</description><identifier>ISSN: 1618-2642</identifier><identifier>ISSN: 1618-2650</identifier><identifier>EISSN: 1618-2650</identifier><identifier>DOI: 10.1007/s00216-007-1249-4</identifier><identifier>PMID: 17404715</identifier><language>eng</language><publisher>Germany: Berlin/Heidelberg : Springer-Verlag</publisher><subject>Bicarbonates - analysis ; Biological colonisation ; Carbonates - analysis ; Carotenoids ; Chlorophyll ; Cyanobacteria - isolation & purification ; Cyanobacterial extremophile ; Desiccation ; Egypt ; Egyptian civilization ; Embalming - methods ; Geologic Sediments - analysis ; Geologic Sediments - chemistry ; Geologic Sediments - microbiology ; Impurities ; Infrared lasers ; Microorganisms ; Mineral composition ; Mineral deposits ; Mummies ; Mummification ; Natron ; Putrefaction ; Raman spectroscopy ; Sodium ; Sodium bicarbonate ; Sodium Bicarbonate - analysis ; Sodium carbonate ; Spectroscopy ; Spectrum analysis ; Spectrum Analysis, Raman ; Sulfates - analysis ; Tissues</subject><ispartof>Analytical and bioanalytical chemistry, 2007-06, Vol.388 (3), p.683-689</ispartof><rights>Springer-Verlag 2007.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-ca91e0bb911f5415b276efb3543b9677458cc886ca0508629468165bf395e4643</citedby><cites>FETCH-LOGICAL-c418t-ca91e0bb911f5415b276efb3543b9677458cc886ca0508629468165bf395e4643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17404715$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-8295$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Edwards, Howell G. M</creatorcontrib><creatorcontrib>Currie, Katherine J</creatorcontrib><creatorcontrib>Ali, Hassan R. H</creatorcontrib><creatorcontrib>Jorge Villar, Susana E</creatorcontrib><creatorcontrib>David, A. Rosalie</creatorcontrib><creatorcontrib>Denton, John</creatorcontrib><title>Raman spectroscopy of natron: shedding light on ancient Egyptian mummification</title><title>Analytical and bioanalytical chemistry</title><addtitle>Anal Bioanal Chem</addtitle><description>The mummification ritual in ancient Egypt involved the evisceration of the corpse and its desiccation using natron, a naturally occurring evaporitic mineral deposit from the Wadi Natrun, Egypt. The deposit typically contains sodium carbonate, sodium bicarbonate and impurities of chloride and sulfate as its major elemental components. It is believed that the function of the natron was to rapidly remove the water from the cadaver to prevent microbial attack associated with subsequent biological tissue degradation and putrefaction. Several specimens of natron that were recently collected from the Wadi Natrun contained coloured zones interspersed with the mineral matrix that are superficially reminiscent of extremophilic cyanobacterial colonisation found elsewhere in hot and cold deserts. Raman spectroscopy of these specimens using visible and near-infrared laser excitation has revealed not only the mineral composition of the natron, but also evidence for the presence of cyanobacterial colonies in several coloured zones observed in the mineral matrix. Key Raman biosignatures of carotenoids, scytonemin and chlorophyll have been identified. [graphic removed]</description><subject>Bicarbonates - analysis</subject><subject>Biological colonisation</subject><subject>Carbonates - analysis</subject><subject>Carotenoids</subject><subject>Chlorophyll</subject><subject>Cyanobacteria - isolation & purification</subject><subject>Cyanobacterial extremophile</subject><subject>Desiccation</subject><subject>Egypt</subject><subject>Egyptian civilization</subject><subject>Embalming - methods</subject><subject>Geologic Sediments - analysis</subject><subject>Geologic Sediments - chemistry</subject><subject>Geologic Sediments - microbiology</subject><subject>Impurities</subject><subject>Infrared lasers</subject><subject>Microorganisms</subject><subject>Mineral composition</subject><subject>Mineral deposits</subject><subject>Mummies</subject><subject>Mummification</subject><subject>Natron</subject><subject>Putrefaction</subject><subject>Raman spectroscopy</subject><subject>Sodium</subject><subject>Sodium bicarbonate</subject><subject>Sodium Bicarbonate - analysis</subject><subject>Sodium carbonate</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Spectrum Analysis, Raman</subject><subject>Sulfates - analysis</subject><subject>Tissues</subject><issn>1618-2642</issn><issn>1618-2650</issn><issn>1618-2650</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqFkV9r1UAQxYNYbK1-AF80IPgiqTOb_etbqdUWioJaX5fN3k26JdlNswlyv70bcqngi09zBn5zmJlTFK8QzhBAfEgABHmVZYWEqoo-KU6Qo6wIZ_D0UVNyXDxP6R4AmUT-rDhGQYEKZCfF1-9mMKFMo7PzFJON476MbRlM7sLHMt253c6Hrux9dzeXMZQmWO_CXF52-3H2eXRYhsG33prZx_CiOGpNn9zLQz0tbj9f_ry4qm6-fbm-OL-pLEU5V9YodNA0CrFlFFlDBHdtUzNaN4oLQZm0VkpuDTCQnCjK8-KsaWvFHOW0Pi3eb77ptxuXRo-TH8y019F4_cn_Otdx6nQ_L1oSxTL9bqPHKT4sLs168Mm6vjfBxSVpAZQJTuC_IFEKELHO4Nt_wPu4TCGfrAnnHKjkarXDjbL5tWly7eOeCHpNUG8J6lWuCer1stcH56UZ3O7vxCGyDLzZgNZEbbrJJ337gwDW2USQ_Kz6DyysniU</recordid><startdate>20070601</startdate><enddate>20070601</enddate><creator>Edwards, Howell G. M</creator><creator>Currie, Katherine J</creator><creator>Ali, Hassan R. H</creator><creator>Jorge Villar, Susana E</creator><creator>David, A. Rosalie</creator><creator>Denton, John</creator><general>Berlin/Heidelberg : Springer-Verlag</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>ADTPV</scope><scope>AOWAS</scope></search><sort><creationdate>20070601</creationdate><title>Raman spectroscopy of natron: shedding light on ancient Egyptian mummification</title><author>Edwards, Howell G. M ; Currie, Katherine J ; Ali, Hassan R. H ; Jorge Villar, Susana E ; David, A. Rosalie ; Denton, John</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-ca91e0bb911f5415b276efb3543b9677458cc886ca0508629468165bf395e4643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Bicarbonates - analysis</topic><topic>Biological colonisation</topic><topic>Carbonates - analysis</topic><topic>Carotenoids</topic><topic>Chlorophyll</topic><topic>Cyanobacteria - isolation & purification</topic><topic>Cyanobacterial extremophile</topic><topic>Desiccation</topic><topic>Egypt</topic><topic>Egyptian civilization</topic><topic>Embalming - methods</topic><topic>Geologic Sediments - analysis</topic><topic>Geologic Sediments - chemistry</topic><topic>Geologic Sediments - microbiology</topic><topic>Impurities</topic><topic>Infrared lasers</topic><topic>Microorganisms</topic><topic>Mineral composition</topic><topic>Mineral deposits</topic><topic>Mummies</topic><topic>Mummification</topic><topic>Natron</topic><topic>Putrefaction</topic><topic>Raman spectroscopy</topic><topic>Sodium</topic><topic>Sodium bicarbonate</topic><topic>Sodium Bicarbonate - analysis</topic><topic>Sodium carbonate</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Spectrum Analysis, Raman</topic><topic>Sulfates - analysis</topic><topic>Tissues</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Edwards, Howell G. M</creatorcontrib><creatorcontrib>Currie, Katherine J</creatorcontrib><creatorcontrib>Ali, Hassan R. H</creatorcontrib><creatorcontrib>Jorge Villar, Susana E</creatorcontrib><creatorcontrib>David, A. Rosalie</creatorcontrib><creatorcontrib>Denton, John</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>https://resources.nclive.org/materials</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>SwePub</collection><collection>SwePub Articles</collection><jtitle>Analytical and bioanalytical chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Edwards, Howell G. M</au><au>Currie, Katherine J</au><au>Ali, Hassan R. H</au><au>Jorge Villar, Susana E</au><au>David, A. Rosalie</au><au>Denton, John</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Raman spectroscopy of natron: shedding light on ancient Egyptian mummification</atitle><jtitle>Analytical and bioanalytical chemistry</jtitle><addtitle>Anal Bioanal Chem</addtitle><date>2007-06-01</date><risdate>2007</risdate><volume>388</volume><issue>3</issue><spage>683</spage><epage>689</epage><pages>683-689</pages><issn>1618-2642</issn><issn>1618-2650</issn><eissn>1618-2650</eissn><abstract>The mummification ritual in ancient Egypt involved the evisceration of the corpse and its desiccation using natron, a naturally occurring evaporitic mineral deposit from the Wadi Natrun, Egypt. The deposit typically contains sodium carbonate, sodium bicarbonate and impurities of chloride and sulfate as its major elemental components. It is believed that the function of the natron was to rapidly remove the water from the cadaver to prevent microbial attack associated with subsequent biological tissue degradation and putrefaction. Several specimens of natron that were recently collected from the Wadi Natrun contained coloured zones interspersed with the mineral matrix that are superficially reminiscent of extremophilic cyanobacterial colonisation found elsewhere in hot and cold deserts. Raman spectroscopy of these specimens using visible and near-infrared laser excitation has revealed not only the mineral composition of the natron, but also evidence for the presence of cyanobacterial colonies in several coloured zones observed in the mineral matrix. Key Raman biosignatures of carotenoids, scytonemin and chlorophyll have been identified. [graphic removed]</abstract><cop>Germany</cop><pub>Berlin/Heidelberg : Springer-Verlag</pub><pmid>17404715</pmid><doi>10.1007/s00216-007-1249-4</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1618-2642 |
ispartof | Analytical and bioanalytical chemistry, 2007-06, Vol.388 (3), p.683-689 |
issn | 1618-2642 1618-2650 1618-2650 |
language | eng |
recordid | cdi_swepub_primary_oai_DiVA_org_ltu_8295 |
source | Springer Nature |
subjects | Bicarbonates - analysis Biological colonisation Carbonates - analysis Carotenoids Chlorophyll Cyanobacteria - isolation & purification Cyanobacterial extremophile Desiccation Egypt Egyptian civilization Embalming - methods Geologic Sediments - analysis Geologic Sediments - chemistry Geologic Sediments - microbiology Impurities Infrared lasers Microorganisms Mineral composition Mineral deposits Mummies Mummification Natron Putrefaction Raman spectroscopy Sodium Sodium bicarbonate Sodium Bicarbonate - analysis Sodium carbonate Spectroscopy Spectrum analysis Spectrum Analysis, Raman Sulfates - analysis Tissues |
title | Raman spectroscopy of natron: shedding light on ancient Egyptian mummification |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T21%3A13%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Raman%20spectroscopy%20of%20natron:%20shedding%20light%20on%20ancient%20Egyptian%20mummification&rft.jtitle=Analytical%20and%20bioanalytical%20chemistry&rft.au=Edwards,%20Howell%20G.%20M&rft.date=2007-06-01&rft.volume=388&rft.issue=3&rft.spage=683&rft.epage=689&rft.pages=683-689&rft.issn=1618-2642&rft.eissn=1618-2650&rft_id=info:doi/10.1007/s00216-007-1249-4&rft_dat=%3Cproquest_swepu%3E70457620%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c418t-ca91e0bb911f5415b276efb3543b9677458cc886ca0508629468165bf395e4643%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2666048690&rft_id=info:pmid/17404715&rfr_iscdi=true |