Loading…

Low-temperature hydrothermal Pt mineralization in uvarovite-bearing ophiolitic chromitites from the Dominican Republic

Platinum-group elements (PGEs) occur in ophiolitic chromitite in the Dominican Republic as platinum-group minerals (PGMs) in spatial association with hydrothermal uvarovite and chromian clinochlore. Bulk-rock total PGE content in a single analyzed chromitite sample is of 6.54 g/t. Three main PGM typ...

Full description

Saved in:
Bibliographic Details
Published in:Mineralium deposita 2022-08, Vol.57 (6), p.955-976
Main Authors: Farré-de-Pablo, Júlia, Proenza, Joaquín A., González-Jiménez, José María, Aiglsperger, Thomas, Torró, Lisard, Domènech, Cristina, Garcia-Casco, Antonio
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a379t-700aff18d87e259a236fd71b1cff718242d003b73496f1090711780cea019db03
cites cdi_FETCH-LOGICAL-a379t-700aff18d87e259a236fd71b1cff718242d003b73496f1090711780cea019db03
container_end_page 976
container_issue 6
container_start_page 955
container_title Mineralium deposita
container_volume 57
creator Farré-de-Pablo, Júlia
Proenza, Joaquín A.
González-Jiménez, José María
Aiglsperger, Thomas
Torró, Lisard
Domènech, Cristina
Garcia-Casco, Antonio
description Platinum-group elements (PGEs) occur in ophiolitic chromitite in the Dominican Republic as platinum-group minerals (PGMs) in spatial association with hydrothermal uvarovite and chromian clinochlore. Bulk-rock total PGE content in a single analyzed chromitite sample is of 6.54 g/t. Three main PGM types are distinguished: euhedral magmatic laurite completely encased in chromite, subhedral to euhedral Ru-Os-Fe-(Ir) compounds partially encased in chromite, and anhedral Pt-Fe–Ni-rich grains exclusively embedded in uvarovite or chromian clinochlore. The Ru-Os-Fe-(Ir) compounds are interpreted as magmatic Ru-Os sulfides that experienced desulfurization during hydrothermal alteration of the chromitites, whereas the Pt-Fe–Ni-rich grains are hydrothermal in origin. We propose a model in which the Pt-Fe–Ni-rich PGMs formed via the accumulation of nanoparticles directly precipitated from the hydrothermal fluids. An estimation of the temperature of crystallization of uvarovite and chromian clinochlore suggests hydrothermal alteration of the chromitite within the thermal range of 150–350 °C. Thermodynamic modeling shows that, within this range of temperature, Pt could be mobilized as aqueous bisulfide complexes (HS − ) by S-poor, highly reducing hydrothermal fluids originated during serpentinization of the host chromitite rock. The crystallization of Ni sulfides in the chromitite would drop the S concentration of the fluid, causing the precipitation of Pt as native element. Ultimately, this process contributes to constrain the conditions for the genesis of hydrothermal PGE mineralizations in ophiolitic chromitites.
doi_str_mv 10.1007/s00126-021-01079-8
format article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_ltu_87632</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2685816695</sourcerecordid><originalsourceid>FETCH-LOGICAL-a379t-700aff18d87e259a236fd71b1cff718242d003b73496f1090711780cea019db03</originalsourceid><addsrcrecordid>eNp9UU1v1DAQtRCVWAp_gJMlrhhmnKw_jlXLl7QSqCpcLSexu66SONjOVu2vx8tWcOM0TzPvvRnNI-QNwnsEkB8yAHLBgCMDBKmZekY22DacoRLiOdkA1HG71eoFeZnzHQBobGFDDrt4z4qbFpdsWZOj-4chxbJ3abIj_V7oFOY6GsOjLSHONMx0PdgUD6E41jmbwnxL47IPcQwl9LTfpzhVVFymvkJarehVbc2htzO9dsvajaF_Rc68HbN7_VTPyY9PH28uv7Ddt89fLy92zDZSFyYBrPeoBiUd32rLG-EHiR323ktUvOUDQNPJptXCI2iQiFJB7yygHjpozsm7k2--P242SwqTTQ8m2mCuws8LE9OtGctqlBQNr_S3J_qS4q_V5WLu4prmeqHhQm0VCqG3lcVPrD7FnJPzf20RzDEOc4rD1DjMnziMqqLm6ZLl-DOX_ln_R_UboDqPuw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2685816695</pqid></control><display><type>article</type><title>Low-temperature hydrothermal Pt mineralization in uvarovite-bearing ophiolitic chromitites from the Dominican Republic</title><source>Springer Link</source><creator>Farré-de-Pablo, Júlia ; Proenza, Joaquín A. ; González-Jiménez, José María ; Aiglsperger, Thomas ; Torró, Lisard ; Domènech, Cristina ; Garcia-Casco, Antonio</creator><creatorcontrib>Farré-de-Pablo, Júlia ; Proenza, Joaquín A. ; González-Jiménez, José María ; Aiglsperger, Thomas ; Torró, Lisard ; Domènech, Cristina ; Garcia-Casco, Antonio</creatorcontrib><description>Platinum-group elements (PGEs) occur in ophiolitic chromitite in the Dominican Republic as platinum-group minerals (PGMs) in spatial association with hydrothermal uvarovite and chromian clinochlore. Bulk-rock total PGE content in a single analyzed chromitite sample is of 6.54 g/t. Three main PGM types are distinguished: euhedral magmatic laurite completely encased in chromite, subhedral to euhedral Ru-Os-Fe-(Ir) compounds partially encased in chromite, and anhedral Pt-Fe–Ni-rich grains exclusively embedded in uvarovite or chromian clinochlore. The Ru-Os-Fe-(Ir) compounds are interpreted as magmatic Ru-Os sulfides that experienced desulfurization during hydrothermal alteration of the chromitites, whereas the Pt-Fe–Ni-rich grains are hydrothermal in origin. We propose a model in which the Pt-Fe–Ni-rich PGMs formed via the accumulation of nanoparticles directly precipitated from the hydrothermal fluids. An estimation of the temperature of crystallization of uvarovite and chromian clinochlore suggests hydrothermal alteration of the chromitite within the thermal range of 150–350 °C. Thermodynamic modeling shows that, within this range of temperature, Pt could be mobilized as aqueous bisulfide complexes (HS − ) by S-poor, highly reducing hydrothermal fluids originated during serpentinization of the host chromitite rock. The crystallization of Ni sulfides in the chromitite would drop the S concentration of the fluid, causing the precipitation of Pt as native element. Ultimately, this process contributes to constrain the conditions for the genesis of hydrothermal PGE mineralizations in ophiolitic chromitites.</description><identifier>ISSN: 0026-4598</identifier><identifier>ISSN: 1432-1866</identifier><identifier>EISSN: 1432-1866</identifier><identifier>DOI: 10.1007/s00126-021-01079-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied Geochemistry ; Chromite ; Civil engineering ; Clinochlore ; Crystallization ; Earth and Environmental Science ; Earth Sciences ; Fluids ; Geology ; Grains ; Hydrothermal ; Hydrothermal alteration ; Iron ; Low temperature ; Mineral Resources ; Mineralization ; Mineralogy ; Nanoparticles ; Nickel ; Ophiolites ; Ophiolitic chromitite ; Osmium ; Platinum ; Platinum-group elements ; Platinum-group minerals ; Rocks ; Ruthenium ; Serpentinization ; Sulfides ; Temperature ; Thermodynamic models ; Tillämpad geokemi ; Uvarovite</subject><ispartof>Mineralium deposita, 2022-08, Vol.57 (6), p.955-976</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a379t-700aff18d87e259a236fd71b1cff718242d003b73496f1090711780cea019db03</citedby><cites>FETCH-LOGICAL-a379t-700aff18d87e259a236fd71b1cff718242d003b73496f1090711780cea019db03</cites><orcidid>0000-0001-9249-843X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-87632$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Farré-de-Pablo, Júlia</creatorcontrib><creatorcontrib>Proenza, Joaquín A.</creatorcontrib><creatorcontrib>González-Jiménez, José María</creatorcontrib><creatorcontrib>Aiglsperger, Thomas</creatorcontrib><creatorcontrib>Torró, Lisard</creatorcontrib><creatorcontrib>Domènech, Cristina</creatorcontrib><creatorcontrib>Garcia-Casco, Antonio</creatorcontrib><title>Low-temperature hydrothermal Pt mineralization in uvarovite-bearing ophiolitic chromitites from the Dominican Republic</title><title>Mineralium deposita</title><addtitle>Miner Deposita</addtitle><description>Platinum-group elements (PGEs) occur in ophiolitic chromitite in the Dominican Republic as platinum-group minerals (PGMs) in spatial association with hydrothermal uvarovite and chromian clinochlore. Bulk-rock total PGE content in a single analyzed chromitite sample is of 6.54 g/t. Three main PGM types are distinguished: euhedral magmatic laurite completely encased in chromite, subhedral to euhedral Ru-Os-Fe-(Ir) compounds partially encased in chromite, and anhedral Pt-Fe–Ni-rich grains exclusively embedded in uvarovite or chromian clinochlore. The Ru-Os-Fe-(Ir) compounds are interpreted as magmatic Ru-Os sulfides that experienced desulfurization during hydrothermal alteration of the chromitites, whereas the Pt-Fe–Ni-rich grains are hydrothermal in origin. We propose a model in which the Pt-Fe–Ni-rich PGMs formed via the accumulation of nanoparticles directly precipitated from the hydrothermal fluids. An estimation of the temperature of crystallization of uvarovite and chromian clinochlore suggests hydrothermal alteration of the chromitite within the thermal range of 150–350 °C. Thermodynamic modeling shows that, within this range of temperature, Pt could be mobilized as aqueous bisulfide complexes (HS − ) by S-poor, highly reducing hydrothermal fluids originated during serpentinization of the host chromitite rock. The crystallization of Ni sulfides in the chromitite would drop the S concentration of the fluid, causing the precipitation of Pt as native element. Ultimately, this process contributes to constrain the conditions for the genesis of hydrothermal PGE mineralizations in ophiolitic chromitites.</description><subject>Applied Geochemistry</subject><subject>Chromite</subject><subject>Civil engineering</subject><subject>Clinochlore</subject><subject>Crystallization</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Fluids</subject><subject>Geology</subject><subject>Grains</subject><subject>Hydrothermal</subject><subject>Hydrothermal alteration</subject><subject>Iron</subject><subject>Low temperature</subject><subject>Mineral Resources</subject><subject>Mineralization</subject><subject>Mineralogy</subject><subject>Nanoparticles</subject><subject>Nickel</subject><subject>Ophiolites</subject><subject>Ophiolitic chromitite</subject><subject>Osmium</subject><subject>Platinum</subject><subject>Platinum-group elements</subject><subject>Platinum-group minerals</subject><subject>Rocks</subject><subject>Ruthenium</subject><subject>Serpentinization</subject><subject>Sulfides</subject><subject>Temperature</subject><subject>Thermodynamic models</subject><subject>Tillämpad geokemi</subject><subject>Uvarovite</subject><issn>0026-4598</issn><issn>1432-1866</issn><issn>1432-1866</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9UU1v1DAQtRCVWAp_gJMlrhhmnKw_jlXLl7QSqCpcLSexu66SONjOVu2vx8tWcOM0TzPvvRnNI-QNwnsEkB8yAHLBgCMDBKmZekY22DacoRLiOdkA1HG71eoFeZnzHQBobGFDDrt4z4qbFpdsWZOj-4chxbJ3abIj_V7oFOY6GsOjLSHONMx0PdgUD6E41jmbwnxL47IPcQwl9LTfpzhVVFymvkJarehVbc2htzO9dsvajaF_Rc68HbN7_VTPyY9PH28uv7Ddt89fLy92zDZSFyYBrPeoBiUd32rLG-EHiR323ktUvOUDQNPJptXCI2iQiFJB7yygHjpozsm7k2--P242SwqTTQ8m2mCuws8LE9OtGctqlBQNr_S3J_qS4q_V5WLu4prmeqHhQm0VCqG3lcVPrD7FnJPzf20RzDEOc4rD1DjMnziMqqLm6ZLl-DOX_ln_R_UboDqPuw</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Farré-de-Pablo, Júlia</creator><creator>Proenza, Joaquín A.</creator><creator>González-Jiménez, José María</creator><creator>Aiglsperger, Thomas</creator><creator>Torró, Lisard</creator><creator>Domènech, Cristina</creator><creator>Garcia-Casco, Antonio</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>ADTPV</scope><scope>AOWAS</scope><orcidid>https://orcid.org/0000-0001-9249-843X</orcidid></search><sort><creationdate>20220801</creationdate><title>Low-temperature hydrothermal Pt mineralization in uvarovite-bearing ophiolitic chromitites from the Dominican Republic</title><author>Farré-de-Pablo, Júlia ; Proenza, Joaquín A. ; González-Jiménez, José María ; Aiglsperger, Thomas ; Torró, Lisard ; Domènech, Cristina ; Garcia-Casco, Antonio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a379t-700aff18d87e259a236fd71b1cff718242d003b73496f1090711780cea019db03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applied Geochemistry</topic><topic>Chromite</topic><topic>Civil engineering</topic><topic>Clinochlore</topic><topic>Crystallization</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Fluids</topic><topic>Geology</topic><topic>Grains</topic><topic>Hydrothermal</topic><topic>Hydrothermal alteration</topic><topic>Iron</topic><topic>Low temperature</topic><topic>Mineral Resources</topic><topic>Mineralization</topic><topic>Mineralogy</topic><topic>Nanoparticles</topic><topic>Nickel</topic><topic>Ophiolites</topic><topic>Ophiolitic chromitite</topic><topic>Osmium</topic><topic>Platinum</topic><topic>Platinum-group elements</topic><topic>Platinum-group minerals</topic><topic>Rocks</topic><topic>Ruthenium</topic><topic>Serpentinization</topic><topic>Sulfides</topic><topic>Temperature</topic><topic>Thermodynamic models</topic><topic>Tillämpad geokemi</topic><topic>Uvarovite</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Farré-de-Pablo, Júlia</creatorcontrib><creatorcontrib>Proenza, Joaquín A.</creatorcontrib><creatorcontrib>González-Jiménez, José María</creatorcontrib><creatorcontrib>Aiglsperger, Thomas</creatorcontrib><creatorcontrib>Torró, Lisard</creatorcontrib><creatorcontrib>Domènech, Cristina</creatorcontrib><creatorcontrib>Garcia-Casco, Antonio</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Science Journals</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SwePub</collection><collection>SwePub Articles</collection><jtitle>Mineralium deposita</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Farré-de-Pablo, Júlia</au><au>Proenza, Joaquín A.</au><au>González-Jiménez, José María</au><au>Aiglsperger, Thomas</au><au>Torró, Lisard</au><au>Domènech, Cristina</au><au>Garcia-Casco, Antonio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low-temperature hydrothermal Pt mineralization in uvarovite-bearing ophiolitic chromitites from the Dominican Republic</atitle><jtitle>Mineralium deposita</jtitle><stitle>Miner Deposita</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>57</volume><issue>6</issue><spage>955</spage><epage>976</epage><pages>955-976</pages><issn>0026-4598</issn><issn>1432-1866</issn><eissn>1432-1866</eissn><abstract>Platinum-group elements (PGEs) occur in ophiolitic chromitite in the Dominican Republic as platinum-group minerals (PGMs) in spatial association with hydrothermal uvarovite and chromian clinochlore. Bulk-rock total PGE content in a single analyzed chromitite sample is of 6.54 g/t. Three main PGM types are distinguished: euhedral magmatic laurite completely encased in chromite, subhedral to euhedral Ru-Os-Fe-(Ir) compounds partially encased in chromite, and anhedral Pt-Fe–Ni-rich grains exclusively embedded in uvarovite or chromian clinochlore. The Ru-Os-Fe-(Ir) compounds are interpreted as magmatic Ru-Os sulfides that experienced desulfurization during hydrothermal alteration of the chromitites, whereas the Pt-Fe–Ni-rich grains are hydrothermal in origin. We propose a model in which the Pt-Fe–Ni-rich PGMs formed via the accumulation of nanoparticles directly precipitated from the hydrothermal fluids. An estimation of the temperature of crystallization of uvarovite and chromian clinochlore suggests hydrothermal alteration of the chromitite within the thermal range of 150–350 °C. Thermodynamic modeling shows that, within this range of temperature, Pt could be mobilized as aqueous bisulfide complexes (HS − ) by S-poor, highly reducing hydrothermal fluids originated during serpentinization of the host chromitite rock. The crystallization of Ni sulfides in the chromitite would drop the S concentration of the fluid, causing the precipitation of Pt as native element. Ultimately, this process contributes to constrain the conditions for the genesis of hydrothermal PGE mineralizations in ophiolitic chromitites.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00126-021-01079-8</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0001-9249-843X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0026-4598
ispartof Mineralium deposita, 2022-08, Vol.57 (6), p.955-976
issn 0026-4598
1432-1866
1432-1866
language eng
recordid cdi_swepub_primary_oai_DiVA_org_ltu_87632
source Springer Link
subjects Applied Geochemistry
Chromite
Civil engineering
Clinochlore
Crystallization
Earth and Environmental Science
Earth Sciences
Fluids
Geology
Grains
Hydrothermal
Hydrothermal alteration
Iron
Low temperature
Mineral Resources
Mineralization
Mineralogy
Nanoparticles
Nickel
Ophiolites
Ophiolitic chromitite
Osmium
Platinum
Platinum-group elements
Platinum-group minerals
Rocks
Ruthenium
Serpentinization
Sulfides
Temperature
Thermodynamic models
Tillämpad geokemi
Uvarovite
title Low-temperature hydrothermal Pt mineralization in uvarovite-bearing ophiolitic chromitites from the Dominican Republic
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T14%3A54%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low-temperature%20hydrothermal%20Pt%20mineralization%20in%20uvarovite-bearing%20ophiolitic%20chromitites%20from%20the%20Dominican%20Republic&rft.jtitle=Mineralium%20deposita&rft.au=Farr%C3%A9-de-Pablo,%20J%C3%BAlia&rft.date=2022-08-01&rft.volume=57&rft.issue=6&rft.spage=955&rft.epage=976&rft.pages=955-976&rft.issn=0026-4598&rft.eissn=1432-1866&rft_id=info:doi/10.1007/s00126-021-01079-8&rft_dat=%3Cproquest_swepu%3E2685816695%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a379t-700aff18d87e259a236fd71b1cff718242d003b73496f1090711780cea019db03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2685816695&rft_id=info:pmid/&rfr_iscdi=true