Loading…
Low-temperature hydrothermal Pt mineralization in uvarovite-bearing ophiolitic chromitites from the Dominican Republic
Platinum-group elements (PGEs) occur in ophiolitic chromitite in the Dominican Republic as platinum-group minerals (PGMs) in spatial association with hydrothermal uvarovite and chromian clinochlore. Bulk-rock total PGE content in a single analyzed chromitite sample is of 6.54 g/t. Three main PGM typ...
Saved in:
Published in: | Mineralium deposita 2022-08, Vol.57 (6), p.955-976 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a379t-700aff18d87e259a236fd71b1cff718242d003b73496f1090711780cea019db03 |
---|---|
cites | cdi_FETCH-LOGICAL-a379t-700aff18d87e259a236fd71b1cff718242d003b73496f1090711780cea019db03 |
container_end_page | 976 |
container_issue | 6 |
container_start_page | 955 |
container_title | Mineralium deposita |
container_volume | 57 |
creator | Farré-de-Pablo, Júlia Proenza, Joaquín A. González-Jiménez, José María Aiglsperger, Thomas Torró, Lisard Domènech, Cristina Garcia-Casco, Antonio |
description | Platinum-group elements (PGEs) occur in ophiolitic chromitite in the Dominican Republic as platinum-group minerals (PGMs) in spatial association with hydrothermal uvarovite and chromian clinochlore. Bulk-rock total PGE content in a single analyzed chromitite sample is of 6.54 g/t. Three main PGM types are distinguished: euhedral magmatic laurite completely encased in chromite, subhedral to euhedral Ru-Os-Fe-(Ir) compounds partially encased in chromite, and anhedral Pt-Fe–Ni-rich grains exclusively embedded in uvarovite or chromian clinochlore. The Ru-Os-Fe-(Ir) compounds are interpreted as magmatic Ru-Os sulfides that experienced desulfurization during hydrothermal alteration of the chromitites, whereas the Pt-Fe–Ni-rich grains are hydrothermal in origin. We propose a model in which the Pt-Fe–Ni-rich PGMs formed via the accumulation of nanoparticles directly precipitated from the hydrothermal fluids. An estimation of the temperature of crystallization of uvarovite and chromian clinochlore suggests hydrothermal alteration of the chromitite within the thermal range of 150–350 °C. Thermodynamic modeling shows that, within this range of temperature, Pt could be mobilized as aqueous bisulfide complexes (HS
−
) by S-poor, highly reducing hydrothermal fluids originated during serpentinization of the host chromitite rock. The crystallization of Ni sulfides in the chromitite would drop the S concentration of the fluid, causing the precipitation of Pt as native element. Ultimately, this process contributes to constrain the conditions for the genesis of hydrothermal PGE mineralizations in ophiolitic chromitites. |
doi_str_mv | 10.1007/s00126-021-01079-8 |
format | article |
fullrecord | <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_ltu_87632</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2685816695</sourcerecordid><originalsourceid>FETCH-LOGICAL-a379t-700aff18d87e259a236fd71b1cff718242d003b73496f1090711780cea019db03</originalsourceid><addsrcrecordid>eNp9UU1v1DAQtRCVWAp_gJMlrhhmnKw_jlXLl7QSqCpcLSexu66SONjOVu2vx8tWcOM0TzPvvRnNI-QNwnsEkB8yAHLBgCMDBKmZekY22DacoRLiOdkA1HG71eoFeZnzHQBobGFDDrt4z4qbFpdsWZOj-4chxbJ3abIj_V7oFOY6GsOjLSHONMx0PdgUD6E41jmbwnxL47IPcQwl9LTfpzhVVFymvkJarehVbc2htzO9dsvajaF_Rc68HbN7_VTPyY9PH28uv7Ddt89fLy92zDZSFyYBrPeoBiUd32rLG-EHiR323ktUvOUDQNPJptXCI2iQiFJB7yygHjpozsm7k2--P242SwqTTQ8m2mCuws8LE9OtGctqlBQNr_S3J_qS4q_V5WLu4prmeqHhQm0VCqG3lcVPrD7FnJPzf20RzDEOc4rD1DjMnziMqqLm6ZLl-DOX_ln_R_UboDqPuw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2685816695</pqid></control><display><type>article</type><title>Low-temperature hydrothermal Pt mineralization in uvarovite-bearing ophiolitic chromitites from the Dominican Republic</title><source>Springer Link</source><creator>Farré-de-Pablo, Júlia ; Proenza, Joaquín A. ; González-Jiménez, José María ; Aiglsperger, Thomas ; Torró, Lisard ; Domènech, Cristina ; Garcia-Casco, Antonio</creator><creatorcontrib>Farré-de-Pablo, Júlia ; Proenza, Joaquín A. ; González-Jiménez, José María ; Aiglsperger, Thomas ; Torró, Lisard ; Domènech, Cristina ; Garcia-Casco, Antonio</creatorcontrib><description>Platinum-group elements (PGEs) occur in ophiolitic chromitite in the Dominican Republic as platinum-group minerals (PGMs) in spatial association with hydrothermal uvarovite and chromian clinochlore. Bulk-rock total PGE content in a single analyzed chromitite sample is of 6.54 g/t. Three main PGM types are distinguished: euhedral magmatic laurite completely encased in chromite, subhedral to euhedral Ru-Os-Fe-(Ir) compounds partially encased in chromite, and anhedral Pt-Fe–Ni-rich grains exclusively embedded in uvarovite or chromian clinochlore. The Ru-Os-Fe-(Ir) compounds are interpreted as magmatic Ru-Os sulfides that experienced desulfurization during hydrothermal alteration of the chromitites, whereas the Pt-Fe–Ni-rich grains are hydrothermal in origin. We propose a model in which the Pt-Fe–Ni-rich PGMs formed via the accumulation of nanoparticles directly precipitated from the hydrothermal fluids. An estimation of the temperature of crystallization of uvarovite and chromian clinochlore suggests hydrothermal alteration of the chromitite within the thermal range of 150–350 °C. Thermodynamic modeling shows that, within this range of temperature, Pt could be mobilized as aqueous bisulfide complexes (HS
−
) by S-poor, highly reducing hydrothermal fluids originated during serpentinization of the host chromitite rock. The crystallization of Ni sulfides in the chromitite would drop the S concentration of the fluid, causing the precipitation of Pt as native element. Ultimately, this process contributes to constrain the conditions for the genesis of hydrothermal PGE mineralizations in ophiolitic chromitites.</description><identifier>ISSN: 0026-4598</identifier><identifier>ISSN: 1432-1866</identifier><identifier>EISSN: 1432-1866</identifier><identifier>DOI: 10.1007/s00126-021-01079-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied Geochemistry ; Chromite ; Civil engineering ; Clinochlore ; Crystallization ; Earth and Environmental Science ; Earth Sciences ; Fluids ; Geology ; Grains ; Hydrothermal ; Hydrothermal alteration ; Iron ; Low temperature ; Mineral Resources ; Mineralization ; Mineralogy ; Nanoparticles ; Nickel ; Ophiolites ; Ophiolitic chromitite ; Osmium ; Platinum ; Platinum-group elements ; Platinum-group minerals ; Rocks ; Ruthenium ; Serpentinization ; Sulfides ; Temperature ; Thermodynamic models ; Tillämpad geokemi ; Uvarovite</subject><ispartof>Mineralium deposita, 2022-08, Vol.57 (6), p.955-976</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a379t-700aff18d87e259a236fd71b1cff718242d003b73496f1090711780cea019db03</citedby><cites>FETCH-LOGICAL-a379t-700aff18d87e259a236fd71b1cff718242d003b73496f1090711780cea019db03</cites><orcidid>0000-0001-9249-843X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-87632$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Farré-de-Pablo, Júlia</creatorcontrib><creatorcontrib>Proenza, Joaquín A.</creatorcontrib><creatorcontrib>González-Jiménez, José María</creatorcontrib><creatorcontrib>Aiglsperger, Thomas</creatorcontrib><creatorcontrib>Torró, Lisard</creatorcontrib><creatorcontrib>Domènech, Cristina</creatorcontrib><creatorcontrib>Garcia-Casco, Antonio</creatorcontrib><title>Low-temperature hydrothermal Pt mineralization in uvarovite-bearing ophiolitic chromitites from the Dominican Republic</title><title>Mineralium deposita</title><addtitle>Miner Deposita</addtitle><description>Platinum-group elements (PGEs) occur in ophiolitic chromitite in the Dominican Republic as platinum-group minerals (PGMs) in spatial association with hydrothermal uvarovite and chromian clinochlore. Bulk-rock total PGE content in a single analyzed chromitite sample is of 6.54 g/t. Three main PGM types are distinguished: euhedral magmatic laurite completely encased in chromite, subhedral to euhedral Ru-Os-Fe-(Ir) compounds partially encased in chromite, and anhedral Pt-Fe–Ni-rich grains exclusively embedded in uvarovite or chromian clinochlore. The Ru-Os-Fe-(Ir) compounds are interpreted as magmatic Ru-Os sulfides that experienced desulfurization during hydrothermal alteration of the chromitites, whereas the Pt-Fe–Ni-rich grains are hydrothermal in origin. We propose a model in which the Pt-Fe–Ni-rich PGMs formed via the accumulation of nanoparticles directly precipitated from the hydrothermal fluids. An estimation of the temperature of crystallization of uvarovite and chromian clinochlore suggests hydrothermal alteration of the chromitite within the thermal range of 150–350 °C. Thermodynamic modeling shows that, within this range of temperature, Pt could be mobilized as aqueous bisulfide complexes (HS
−
) by S-poor, highly reducing hydrothermal fluids originated during serpentinization of the host chromitite rock. The crystallization of Ni sulfides in the chromitite would drop the S concentration of the fluid, causing the precipitation of Pt as native element. Ultimately, this process contributes to constrain the conditions for the genesis of hydrothermal PGE mineralizations in ophiolitic chromitites.</description><subject>Applied Geochemistry</subject><subject>Chromite</subject><subject>Civil engineering</subject><subject>Clinochlore</subject><subject>Crystallization</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Fluids</subject><subject>Geology</subject><subject>Grains</subject><subject>Hydrothermal</subject><subject>Hydrothermal alteration</subject><subject>Iron</subject><subject>Low temperature</subject><subject>Mineral Resources</subject><subject>Mineralization</subject><subject>Mineralogy</subject><subject>Nanoparticles</subject><subject>Nickel</subject><subject>Ophiolites</subject><subject>Ophiolitic chromitite</subject><subject>Osmium</subject><subject>Platinum</subject><subject>Platinum-group elements</subject><subject>Platinum-group minerals</subject><subject>Rocks</subject><subject>Ruthenium</subject><subject>Serpentinization</subject><subject>Sulfides</subject><subject>Temperature</subject><subject>Thermodynamic models</subject><subject>Tillämpad geokemi</subject><subject>Uvarovite</subject><issn>0026-4598</issn><issn>1432-1866</issn><issn>1432-1866</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9UU1v1DAQtRCVWAp_gJMlrhhmnKw_jlXLl7QSqCpcLSexu66SONjOVu2vx8tWcOM0TzPvvRnNI-QNwnsEkB8yAHLBgCMDBKmZekY22DacoRLiOdkA1HG71eoFeZnzHQBobGFDDrt4z4qbFpdsWZOj-4chxbJ3abIj_V7oFOY6GsOjLSHONMx0PdgUD6E41jmbwnxL47IPcQwl9LTfpzhVVFymvkJarehVbc2htzO9dsvajaF_Rc68HbN7_VTPyY9PH28uv7Ddt89fLy92zDZSFyYBrPeoBiUd32rLG-EHiR323ktUvOUDQNPJptXCI2iQiFJB7yygHjpozsm7k2--P242SwqTTQ8m2mCuws8LE9OtGctqlBQNr_S3J_qS4q_V5WLu4prmeqHhQm0VCqG3lcVPrD7FnJPzf20RzDEOc4rD1DjMnziMqqLm6ZLl-DOX_ln_R_UboDqPuw</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Farré-de-Pablo, Júlia</creator><creator>Proenza, Joaquín A.</creator><creator>González-Jiménez, José María</creator><creator>Aiglsperger, Thomas</creator><creator>Torró, Lisard</creator><creator>Domènech, Cristina</creator><creator>Garcia-Casco, Antonio</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>ADTPV</scope><scope>AOWAS</scope><orcidid>https://orcid.org/0000-0001-9249-843X</orcidid></search><sort><creationdate>20220801</creationdate><title>Low-temperature hydrothermal Pt mineralization in uvarovite-bearing ophiolitic chromitites from the Dominican Republic</title><author>Farré-de-Pablo, Júlia ; Proenza, Joaquín A. ; González-Jiménez, José María ; Aiglsperger, Thomas ; Torró, Lisard ; Domènech, Cristina ; Garcia-Casco, Antonio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a379t-700aff18d87e259a236fd71b1cff718242d003b73496f1090711780cea019db03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applied Geochemistry</topic><topic>Chromite</topic><topic>Civil engineering</topic><topic>Clinochlore</topic><topic>Crystallization</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Fluids</topic><topic>Geology</topic><topic>Grains</topic><topic>Hydrothermal</topic><topic>Hydrothermal alteration</topic><topic>Iron</topic><topic>Low temperature</topic><topic>Mineral Resources</topic><topic>Mineralization</topic><topic>Mineralogy</topic><topic>Nanoparticles</topic><topic>Nickel</topic><topic>Ophiolites</topic><topic>Ophiolitic chromitite</topic><topic>Osmium</topic><topic>Platinum</topic><topic>Platinum-group elements</topic><topic>Platinum-group minerals</topic><topic>Rocks</topic><topic>Ruthenium</topic><topic>Serpentinization</topic><topic>Sulfides</topic><topic>Temperature</topic><topic>Thermodynamic models</topic><topic>Tillämpad geokemi</topic><topic>Uvarovite</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Farré-de-Pablo, Júlia</creatorcontrib><creatorcontrib>Proenza, Joaquín A.</creatorcontrib><creatorcontrib>González-Jiménez, José María</creatorcontrib><creatorcontrib>Aiglsperger, Thomas</creatorcontrib><creatorcontrib>Torró, Lisard</creatorcontrib><creatorcontrib>Domènech, Cristina</creatorcontrib><creatorcontrib>Garcia-Casco, Antonio</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Science Journals</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SwePub</collection><collection>SwePub Articles</collection><jtitle>Mineralium deposita</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Farré-de-Pablo, Júlia</au><au>Proenza, Joaquín A.</au><au>González-Jiménez, José María</au><au>Aiglsperger, Thomas</au><au>Torró, Lisard</au><au>Domènech, Cristina</au><au>Garcia-Casco, Antonio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low-temperature hydrothermal Pt mineralization in uvarovite-bearing ophiolitic chromitites from the Dominican Republic</atitle><jtitle>Mineralium deposita</jtitle><stitle>Miner Deposita</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>57</volume><issue>6</issue><spage>955</spage><epage>976</epage><pages>955-976</pages><issn>0026-4598</issn><issn>1432-1866</issn><eissn>1432-1866</eissn><abstract>Platinum-group elements (PGEs) occur in ophiolitic chromitite in the Dominican Republic as platinum-group minerals (PGMs) in spatial association with hydrothermal uvarovite and chromian clinochlore. Bulk-rock total PGE content in a single analyzed chromitite sample is of 6.54 g/t. Three main PGM types are distinguished: euhedral magmatic laurite completely encased in chromite, subhedral to euhedral Ru-Os-Fe-(Ir) compounds partially encased in chromite, and anhedral Pt-Fe–Ni-rich grains exclusively embedded in uvarovite or chromian clinochlore. The Ru-Os-Fe-(Ir) compounds are interpreted as magmatic Ru-Os sulfides that experienced desulfurization during hydrothermal alteration of the chromitites, whereas the Pt-Fe–Ni-rich grains are hydrothermal in origin. We propose a model in which the Pt-Fe–Ni-rich PGMs formed via the accumulation of nanoparticles directly precipitated from the hydrothermal fluids. An estimation of the temperature of crystallization of uvarovite and chromian clinochlore suggests hydrothermal alteration of the chromitite within the thermal range of 150–350 °C. Thermodynamic modeling shows that, within this range of temperature, Pt could be mobilized as aqueous bisulfide complexes (HS
−
) by S-poor, highly reducing hydrothermal fluids originated during serpentinization of the host chromitite rock. The crystallization of Ni sulfides in the chromitite would drop the S concentration of the fluid, causing the precipitation of Pt as native element. Ultimately, this process contributes to constrain the conditions for the genesis of hydrothermal PGE mineralizations in ophiolitic chromitites.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00126-021-01079-8</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0001-9249-843X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0026-4598 |
ispartof | Mineralium deposita, 2022-08, Vol.57 (6), p.955-976 |
issn | 0026-4598 1432-1866 1432-1866 |
language | eng |
recordid | cdi_swepub_primary_oai_DiVA_org_ltu_87632 |
source | Springer Link |
subjects | Applied Geochemistry Chromite Civil engineering Clinochlore Crystallization Earth and Environmental Science Earth Sciences Fluids Geology Grains Hydrothermal Hydrothermal alteration Iron Low temperature Mineral Resources Mineralization Mineralogy Nanoparticles Nickel Ophiolites Ophiolitic chromitite Osmium Platinum Platinum-group elements Platinum-group minerals Rocks Ruthenium Serpentinization Sulfides Temperature Thermodynamic models Tillämpad geokemi Uvarovite |
title | Low-temperature hydrothermal Pt mineralization in uvarovite-bearing ophiolitic chromitites from the Dominican Republic |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T14%3A54%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low-temperature%20hydrothermal%20Pt%20mineralization%20in%20uvarovite-bearing%20ophiolitic%20chromitites%20from%20the%20Dominican%20Republic&rft.jtitle=Mineralium%20deposita&rft.au=Farr%C3%A9-de-Pablo,%20J%C3%BAlia&rft.date=2022-08-01&rft.volume=57&rft.issue=6&rft.spage=955&rft.epage=976&rft.pages=955-976&rft.issn=0026-4598&rft.eissn=1432-1866&rft_id=info:doi/10.1007/s00126-021-01079-8&rft_dat=%3Cproquest_swepu%3E2685816695%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a379t-700aff18d87e259a236fd71b1cff718242d003b73496f1090711780cea019db03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2685816695&rft_id=info:pmid/&rfr_iscdi=true |