Loading…
Hidden dimensions of the data: PCA vs autoencoders
Principal component analysis (PCA) has been a commonly used unsupervised learning method with broad applications in both descriptive and inferential analytics. It is widely used for representation learning to extract key features from a dataset and visualize them in a lower dimensional space. With m...
Saved in:
Published in: | Quality engineering 2023-10, Vol.35 (4), p.741-750 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c365t-4f768f705859b3b99c6318dff4ba667e132b55d9322236530b17d0c5034199393 |
---|---|
cites | cdi_FETCH-LOGICAL-c365t-4f768f705859b3b99c6318dff4ba667e132b55d9322236530b17d0c5034199393 |
container_end_page | 750 |
container_issue | 4 |
container_start_page | 741 |
container_title | Quality engineering |
container_volume | 35 |
creator | Cacciarelli, Davide Kulahci, Murat |
description | Principal component analysis (PCA) has been a commonly used unsupervised learning method with broad applications in both descriptive and inferential analytics. It is widely used for representation learning to extract key features from a dataset and visualize them in a lower dimensional space. With more applications of neural network-based methods, autoencoders (AEs) have gained popularity for dimensionality reduction tasks. In this paper, we explore the intriguing relationship between PCA and AEs and demonstrate, through some examples, how these two approaches yield similar results in the case of the so-called linear AEs (LAEs). This study provides insights into the evolving landscape of unsupervised learning and highlights the relevance of both PCA and AEs in modern data analysis. |
doi_str_mv | 10.1080/08982112.2023.2231064 |
format | article |
fullrecord | <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_ltu_99664</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2871533487</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-4f768f705859b3b99c6318dff4ba667e132b55d9322236530b17d0c5034199393</originalsourceid><addsrcrecordid>eNo9kM1KAzEYRYMoWKuPIATcOjXJl2QSd6X-VCjoQt2GzCTRKe2kJjOKb-8MVVd3c-7lchA6p2RGiSJXRGnFKGUzRhjMGANKJD9AEyqAFZwxdogmI1OM0DE6yXlNCFVKwwSxZeOcb7Frtr7NTWwzjgF37x4729lr_LSY48-Mbd9F39bR-ZRP0VGwm-zPfnOKXu5unxfLYvV4_7CYr4oapOgKHkqpQkmEErqCSutaAlUuBF5ZKUtPgVVCOA3DwaEApKKlI7UgwKnWoGGKLve7-cvv-srsUrO16dtE25ib5nVuYnozm643WkvJB_xij-9S_Oh97sw69qkdHhqmysEFcFUOlNhTdYo5Jx_-Zykxo03zZ9OMNs2vTfgB1dNkMA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2871533487</pqid></control><display><type>article</type><title>Hidden dimensions of the data: PCA vs autoencoders</title><source>EBSCOhost Business Source Ultimate</source><source>Taylor and Francis Science and Technology Collection</source><creator>Cacciarelli, Davide ; Kulahci, Murat</creator><creatorcontrib>Cacciarelli, Davide ; Kulahci, Murat</creatorcontrib><description>Principal component analysis (PCA) has been a commonly used unsupervised learning method with broad applications in both descriptive and inferential analytics. It is widely used for representation learning to extract key features from a dataset and visualize them in a lower dimensional space. With more applications of neural network-based methods, autoencoders (AEs) have gained popularity for dimensionality reduction tasks. In this paper, we explore the intriguing relationship between PCA and AEs and demonstrate, through some examples, how these two approaches yield similar results in the case of the so-called linear AEs (LAEs). This study provides insights into the evolving landscape of unsupervised learning and highlights the relevance of both PCA and AEs in modern data analysis.</description><identifier>ISSN: 0898-2112</identifier><identifier>ISSN: 1532-4222</identifier><identifier>EISSN: 1532-4222</identifier><identifier>DOI: 10.1080/08982112.2023.2231064</identifier><language>eng</language><publisher>Milwaukee: Taylor & Francis Ltd</publisher><subject>Data analysis ; Kvalitetsteknik och logistik ; Machine learning ; Neural networks ; Principal components analysis ; Quality Technology and Logistics ; Unsupervised learning</subject><ispartof>Quality engineering, 2023-10, Vol.35 (4), p.741-750</ispartof><rights>2023 Taylor & Francis Group, LLC</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-4f768f705859b3b99c6318dff4ba667e132b55d9322236530b17d0c5034199393</citedby><cites>FETCH-LOGICAL-c365t-4f768f705859b3b99c6318dff4ba667e132b55d9322236530b17d0c5034199393</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-99664$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Cacciarelli, Davide</creatorcontrib><creatorcontrib>Kulahci, Murat</creatorcontrib><title>Hidden dimensions of the data: PCA vs autoencoders</title><title>Quality engineering</title><description>Principal component analysis (PCA) has been a commonly used unsupervised learning method with broad applications in both descriptive and inferential analytics. It is widely used for representation learning to extract key features from a dataset and visualize them in a lower dimensional space. With more applications of neural network-based methods, autoencoders (AEs) have gained popularity for dimensionality reduction tasks. In this paper, we explore the intriguing relationship between PCA and AEs and demonstrate, through some examples, how these two approaches yield similar results in the case of the so-called linear AEs (LAEs). This study provides insights into the evolving landscape of unsupervised learning and highlights the relevance of both PCA and AEs in modern data analysis.</description><subject>Data analysis</subject><subject>Kvalitetsteknik och logistik</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Principal components analysis</subject><subject>Quality Technology and Logistics</subject><subject>Unsupervised learning</subject><issn>0898-2112</issn><issn>1532-4222</issn><issn>1532-4222</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kM1KAzEYRYMoWKuPIATcOjXJl2QSd6X-VCjoQt2GzCTRKe2kJjOKb-8MVVd3c-7lchA6p2RGiSJXRGnFKGUzRhjMGANKJD9AEyqAFZwxdogmI1OM0DE6yXlNCFVKwwSxZeOcb7Frtr7NTWwzjgF37x4729lr_LSY48-Mbd9F39bR-ZRP0VGwm-zPfnOKXu5unxfLYvV4_7CYr4oapOgKHkqpQkmEErqCSutaAlUuBF5ZKUtPgVVCOA3DwaEApKKlI7UgwKnWoGGKLve7-cvv-srsUrO16dtE25ib5nVuYnozm643WkvJB_xij-9S_Oh97sw69qkdHhqmysEFcFUOlNhTdYo5Jx_-Zykxo03zZ9OMNs2vTfgB1dNkMA</recordid><startdate>20231002</startdate><enddate>20231002</enddate><creator>Cacciarelli, Davide</creator><creator>Kulahci, Murat</creator><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>U9A</scope><scope>ADTPV</scope><scope>AOWAS</scope></search><sort><creationdate>20231002</creationdate><title>Hidden dimensions of the data: PCA vs autoencoders</title><author>Cacciarelli, Davide ; Kulahci, Murat</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-4f768f705859b3b99c6318dff4ba667e132b55d9322236530b17d0c5034199393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Data analysis</topic><topic>Kvalitetsteknik och logistik</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Principal components analysis</topic><topic>Quality Technology and Logistics</topic><topic>Unsupervised learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cacciarelli, Davide</creatorcontrib><creatorcontrib>Kulahci, Murat</creatorcontrib><collection>CrossRef</collection><collection>SwePub</collection><collection>SwePub Articles</collection><jtitle>Quality engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cacciarelli, Davide</au><au>Kulahci, Murat</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hidden dimensions of the data: PCA vs autoencoders</atitle><jtitle>Quality engineering</jtitle><date>2023-10-02</date><risdate>2023</risdate><volume>35</volume><issue>4</issue><spage>741</spage><epage>750</epage><pages>741-750</pages><issn>0898-2112</issn><issn>1532-4222</issn><eissn>1532-4222</eissn><abstract>Principal component analysis (PCA) has been a commonly used unsupervised learning method with broad applications in both descriptive and inferential analytics. It is widely used for representation learning to extract key features from a dataset and visualize them in a lower dimensional space. With more applications of neural network-based methods, autoencoders (AEs) have gained popularity for dimensionality reduction tasks. In this paper, we explore the intriguing relationship between PCA and AEs and demonstrate, through some examples, how these two approaches yield similar results in the case of the so-called linear AEs (LAEs). This study provides insights into the evolving landscape of unsupervised learning and highlights the relevance of both PCA and AEs in modern data analysis.</abstract><cop>Milwaukee</cop><pub>Taylor & Francis Ltd</pub><doi>10.1080/08982112.2023.2231064</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0898-2112 |
ispartof | Quality engineering, 2023-10, Vol.35 (4), p.741-750 |
issn | 0898-2112 1532-4222 1532-4222 |
language | eng |
recordid | cdi_swepub_primary_oai_DiVA_org_ltu_99664 |
source | EBSCOhost Business Source Ultimate; Taylor and Francis Science and Technology Collection |
subjects | Data analysis Kvalitetsteknik och logistik Machine learning Neural networks Principal components analysis Quality Technology and Logistics Unsupervised learning |
title | Hidden dimensions of the data: PCA vs autoencoders |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T21%3A16%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hidden%20dimensions%20of%20the%20data:%20PCA%20vs%20autoencoders&rft.jtitle=Quality%20engineering&rft.au=Cacciarelli,%20Davide&rft.date=2023-10-02&rft.volume=35&rft.issue=4&rft.spage=741&rft.epage=750&rft.pages=741-750&rft.issn=0898-2112&rft.eissn=1532-4222&rft_id=info:doi/10.1080/08982112.2023.2231064&rft_dat=%3Cproquest_swepu%3E2871533487%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c365t-4f768f705859b3b99c6318dff4ba667e132b55d9322236530b17d0c5034199393%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2871533487&rft_id=info:pmid/&rfr_iscdi=true |