Loading…

TrustE-VC: Trustworthy Evaluation Framework for Industrial Connected Vehicles in the Cloud

The integration between cloud computing and vehicular ad hoc networks, namely, vehicular clouds (VCs), has become a significant research area. This integration was proposed to accelerate the adoption of intelligent transportation systems. The trustworthiness in VCs is expected to carry more computin...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on industrial informatics 2020-09, Vol.16 (9), p.6203-6213
Main Authors: Aladwan, Mohammad N., Awaysheh, Feras M., Alawadi, Sadi, Alazab, Mamoun, Pena, Tomas F., Cabaleiro, Jose C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The integration between cloud computing and vehicular ad hoc networks, namely, vehicular clouds (VCs), has become a significant research area. This integration was proposed to accelerate the adoption of intelligent transportation systems. The trustworthiness in VCs is expected to carry more computing capabilities that manage large-scale collected data. This trend requires a security evaluation framework that ensures data privacy protection, integrity of information, and availability of resources. To the best of our knowledge, this is the first study that proposes a robust trustworthiness evaluation of vehicular cloud for security criteria evaluation and selection. This article proposes three-level security features in order to develop effectiveness and trustworthiness in VCs. To assess and evaluate these security features, our evaluation framework consists of three main interconnected components: 1) an aggregation of the security evaluation values of the security criteria for each level; 2) a fuzzy multicriteria decision-making algorithm; and 3) a simple additive weight associated with the importance-performance analysis and performance rate to visualize the framework findings. The evaluation results of the security criteria based on the average performance rate and global weight suggest that data residency, data privacy, and data ownership are the most pressing challenges in assessing data protection in a VC environment. Overall, this article paves the way for a secure VC using an evaluation of effective security features and underscores directions and challenges facing the VC community. This article sheds light on the importance of security by design, emphasizing multiple layers of security when implementing industrial VCs.
ISSN:1551-3203
1941-0050
1941-0050
DOI:10.1109/TII.2020.2966288