Loading…
A novel hybrid meta-heuristic contrast stretching technique for improved skin lesion segmentation
The high precedence of epidemiological examination of skin lesions necessitated the well-performing efficient classification and segmentation models. In the past two decades, various algorithms, especially machine/deep learning-based methods, replicated the classical visual examination to accomplish...
Saved in:
Published in: | Computers in biology and medicine 2022-12, Vol.151 (Pt A), p.106222-106222, Article 106222 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3546-6d38a35985efa4d538bde7735de1ac023fdf42a1a1775492f2fd2c784f45e05b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c3546-6d38a35985efa4d538bde7735de1ac023fdf42a1a1775492f2fd2c784f45e05b3 |
container_end_page | 106222 |
container_issue | Pt A |
container_start_page | 106222 |
container_title | Computers in biology and medicine |
container_volume | 151 |
creator | Malik, Shairyar Islam, S. M. Riazul Akram, Tallha Naqvi, Syed Rameez Alghamdi, Norah Saleh Baryannis, George |
description | The high precedence of epidemiological examination of skin lesions necessitated the well-performing efficient classification and segmentation models. In the past two decades, various algorithms, especially machine/deep learning-based methods, replicated the classical visual examination to accomplish the above-mentioned tasks. These automated streams of models demand evident lesions with less background and noise affecting the region of interest. However, even after the proposal of these advanced techniques, there are gaps in achieving the efficacy of matter. Recently, many preprocessors proposed to enhance the contrast of lesions, which further aided the skin lesion segmentation and classification tasks. Metaheuristics are the methods used to support the search space optimisation problems. We propose a novel Hybrid Metaheuristic Differential Evolution-Bat Algorithm (DE-BA), which estimates parameters used in the brightness preserving contrast stretching transformation function. For extensive experimentation we tested our proposed algorithm on various publicly available databases like ISIC 2016, 2017, 2018 and PH2, and validated the proposed model with some state-of-the-art already existing segmentation models. The tabular and visual comparison of the results concluded that DE-BA as a preprocessor positively enhances the segmentation results.
•Implementation of novel Meta-heuristic based contrast stretching algorithm.•A hybrid model for contrast enhancement is named DE-BA.•Datasets accommodated were ISIC-2016, 2017, 2018 and PH2 for experimentation.•Preprocessor validated by segmenting images with three segmentation algorithms.•Enhance image segmentation outperformed original image segmentation results. |
doi_str_mv | 10.1016/j.compbiomed.2022.106222 |
format | article |
fullrecord | <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_mau_62886</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010482522009301</els_id><sourcerecordid>2741308382</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3546-6d38a35985efa4d538bde7735de1ac023fdf42a1a1775492f2fd2c784f45e05b3</originalsourceid><addsrcrecordid>eNqFkctuEzEUQC0EoqHwC8gSGxZM8HucZWh5SZXYAFvLY99JHDJ2sD1F_XscTQsSG1aWfc99-SCEKVlTQtXbw9ql6TSENIFfM8JYe1aMsUdoRXW_6Yjk4jFaEUJJJzSTF-hZKQdCiCCcPEUXXHHBBVErZLc4pls44v3dkIPHE1Tb7WHOodTgsEuxZlsqLjVDdfsQd7iC28fwcwY8pozDdMqtgMflR4j4CCWkiAvsJojV1nZ5jp6M9ljgxf15ib59eP_16lN38-Xj56vtTee4FKpTnmvL5UZLGK3wkuvBQ99z6YFaRxgf_SiYpZb2vRQbNrLRM9drMQoJRA78Er1Z6pZfcJoHc8phsvnOJBvMdfi-NSnvzGRno5jWquGvF7yN33Yp1UyhODgebYQ0F8N6LqhSlPQNffUPekhzjm2ZRgnKieaaNUovlMuplAzjnwkoMWdr5mD-WjNna2ax1lJf3jeYh3PsIfFBUwPeLQC0D7wNkE1xAaIDHzK4anwK_-_yG-gErp0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2741308382</pqid></control><display><type>article</type><title>A novel hybrid meta-heuristic contrast stretching technique for improved skin lesion segmentation</title><source>ScienceDirect Freedom Collection</source><creator>Malik, Shairyar ; Islam, S. M. Riazul ; Akram, Tallha ; Naqvi, Syed Rameez ; Alghamdi, Norah Saleh ; Baryannis, George</creator><creatorcontrib>Malik, Shairyar ; Islam, S. M. Riazul ; Akram, Tallha ; Naqvi, Syed Rameez ; Alghamdi, Norah Saleh ; Baryannis, George</creatorcontrib><description>The high precedence of epidemiological examination of skin lesions necessitated the well-performing efficient classification and segmentation models. In the past two decades, various algorithms, especially machine/deep learning-based methods, replicated the classical visual examination to accomplish the above-mentioned tasks. These automated streams of models demand evident lesions with less background and noise affecting the region of interest. However, even after the proposal of these advanced techniques, there are gaps in achieving the efficacy of matter. Recently, many preprocessors proposed to enhance the contrast of lesions, which further aided the skin lesion segmentation and classification tasks. Metaheuristics are the methods used to support the search space optimisation problems. We propose a novel Hybrid Metaheuristic Differential Evolution-Bat Algorithm (DE-BA), which estimates parameters used in the brightness preserving contrast stretching transformation function. For extensive experimentation we tested our proposed algorithm on various publicly available databases like ISIC 2016, 2017, 2018 and PH2, and validated the proposed model with some state-of-the-art already existing segmentation models. The tabular and visual comparison of the results concluded that DE-BA as a preprocessor positively enhances the segmentation results.
•Implementation of novel Meta-heuristic based contrast stretching algorithm.•A hybrid model for contrast enhancement is named DE-BA.•Datasets accommodated were ISIC-2016, 2017, 2018 and PH2 for experimentation.•Preprocessor validated by segmenting images with three segmentation algorithms.•Enhance image segmentation outperformed original image segmentation results.</description><identifier>ISSN: 0010-4825</identifier><identifier>ISSN: 1879-0534</identifier><identifier>EISSN: 1879-0534</identifier><identifier>DOI: 10.1016/j.compbiomed.2022.106222</identifier><identifier>PMID: 36343406</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Algorithms ; Background noise ; Bat algorithm ; Biology ; Classification ; Computers ; Deep learning ; Dermoscopy - methods ; Differential evolution ; Epidemiology ; Evolutionary algorithms ; Evolutionary computation ; Experimentation ; Heuristic methods ; Heuristics ; Humans ; Image Processing, Computer-Assisted - methods ; Lesions ; Literature reviews ; Machine learning ; Medicine ; Melanoma - diagnosis ; Naturvetenskapernas didaktik ; Neural networks ; Optimization ; Parameter estimation ; Science education ; Segmentation ; Skin cancer ; Skin diseases ; Skin Diseases - diagnostic imaging ; Skin lesion segmentation ; Skin lesions ; Skin Neoplasms - diagnosis ; Stretching</subject><ispartof>Computers in biology and medicine, 2022-12, Vol.151 (Pt A), p.106222-106222, Article 106222</ispartof><rights>2022</rights><rights>Copyright © 2022. Published by Elsevier Ltd.</rights><rights>Copyright Elsevier Limited Dec 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3546-6d38a35985efa4d538bde7735de1ac023fdf42a1a1775492f2fd2c784f45e05b3</citedby><cites>FETCH-LOGICAL-c3546-6d38a35985efa4d538bde7735de1ac023fdf42a1a1775492f2fd2c784f45e05b3</cites><orcidid>0000-0001-6421-6001 ; 0000-0002-2118-5812 ; 0000-0003-2968-9561 ; 0000-0001-6954-926X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36343406$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:mau:diva-62886$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Malik, Shairyar</creatorcontrib><creatorcontrib>Islam, S. M. Riazul</creatorcontrib><creatorcontrib>Akram, Tallha</creatorcontrib><creatorcontrib>Naqvi, Syed Rameez</creatorcontrib><creatorcontrib>Alghamdi, Norah Saleh</creatorcontrib><creatorcontrib>Baryannis, George</creatorcontrib><title>A novel hybrid meta-heuristic contrast stretching technique for improved skin lesion segmentation</title><title>Computers in biology and medicine</title><addtitle>Comput Biol Med</addtitle><description>The high precedence of epidemiological examination of skin lesions necessitated the well-performing efficient classification and segmentation models. In the past two decades, various algorithms, especially machine/deep learning-based methods, replicated the classical visual examination to accomplish the above-mentioned tasks. These automated streams of models demand evident lesions with less background and noise affecting the region of interest. However, even after the proposal of these advanced techniques, there are gaps in achieving the efficacy of matter. Recently, many preprocessors proposed to enhance the contrast of lesions, which further aided the skin lesion segmentation and classification tasks. Metaheuristics are the methods used to support the search space optimisation problems. We propose a novel Hybrid Metaheuristic Differential Evolution-Bat Algorithm (DE-BA), which estimates parameters used in the brightness preserving contrast stretching transformation function. For extensive experimentation we tested our proposed algorithm on various publicly available databases like ISIC 2016, 2017, 2018 and PH2, and validated the proposed model with some state-of-the-art already existing segmentation models. The tabular and visual comparison of the results concluded that DE-BA as a preprocessor positively enhances the segmentation results.
•Implementation of novel Meta-heuristic based contrast stretching algorithm.•A hybrid model for contrast enhancement is named DE-BA.•Datasets accommodated were ISIC-2016, 2017, 2018 and PH2 for experimentation.•Preprocessor validated by segmenting images with three segmentation algorithms.•Enhance image segmentation outperformed original image segmentation results.</description><subject>Algorithms</subject><subject>Background noise</subject><subject>Bat algorithm</subject><subject>Biology</subject><subject>Classification</subject><subject>Computers</subject><subject>Deep learning</subject><subject>Dermoscopy - methods</subject><subject>Differential evolution</subject><subject>Epidemiology</subject><subject>Evolutionary algorithms</subject><subject>Evolutionary computation</subject><subject>Experimentation</subject><subject>Heuristic methods</subject><subject>Heuristics</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Lesions</subject><subject>Literature reviews</subject><subject>Machine learning</subject><subject>Medicine</subject><subject>Melanoma - diagnosis</subject><subject>Naturvetenskapernas didaktik</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Parameter estimation</subject><subject>Science education</subject><subject>Segmentation</subject><subject>Skin cancer</subject><subject>Skin diseases</subject><subject>Skin Diseases - diagnostic imaging</subject><subject>Skin lesion segmentation</subject><subject>Skin lesions</subject><subject>Skin Neoplasms - diagnosis</subject><subject>Stretching</subject><issn>0010-4825</issn><issn>1879-0534</issn><issn>1879-0534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkctuEzEUQC0EoqHwC8gSGxZM8HucZWh5SZXYAFvLY99JHDJ2sD1F_XscTQsSG1aWfc99-SCEKVlTQtXbw9ql6TSENIFfM8JYe1aMsUdoRXW_6Yjk4jFaEUJJJzSTF-hZKQdCiCCcPEUXXHHBBVErZLc4pls44v3dkIPHE1Tb7WHOodTgsEuxZlsqLjVDdfsQd7iC28fwcwY8pozDdMqtgMflR4j4CCWkiAvsJojV1nZ5jp6M9ljgxf15ib59eP_16lN38-Xj56vtTee4FKpTnmvL5UZLGK3wkuvBQ99z6YFaRxgf_SiYpZb2vRQbNrLRM9drMQoJRA78Er1Z6pZfcJoHc8phsvnOJBvMdfi-NSnvzGRno5jWquGvF7yN33Yp1UyhODgebYQ0F8N6LqhSlPQNffUPekhzjm2ZRgnKieaaNUovlMuplAzjnwkoMWdr5mD-WjNna2ax1lJf3jeYh3PsIfFBUwPeLQC0D7wNkE1xAaIDHzK4anwK_-_yG-gErp0</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Malik, Shairyar</creator><creator>Islam, S. M. Riazul</creator><creator>Akram, Tallha</creator><creator>Naqvi, Syed Rameez</creator><creator>Alghamdi, Norah Saleh</creator><creator>Baryannis, George</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>M7Z</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>ADTPV</scope><scope>AOWAS</scope><orcidid>https://orcid.org/0000-0001-6421-6001</orcidid><orcidid>https://orcid.org/0000-0002-2118-5812</orcidid><orcidid>https://orcid.org/0000-0003-2968-9561</orcidid><orcidid>https://orcid.org/0000-0001-6954-926X</orcidid></search><sort><creationdate>20221201</creationdate><title>A novel hybrid meta-heuristic contrast stretching technique for improved skin lesion segmentation</title><author>Malik, Shairyar ; Islam, S. M. Riazul ; Akram, Tallha ; Naqvi, Syed Rameez ; Alghamdi, Norah Saleh ; Baryannis, George</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3546-6d38a35985efa4d538bde7735de1ac023fdf42a1a1775492f2fd2c784f45e05b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Background noise</topic><topic>Bat algorithm</topic><topic>Biology</topic><topic>Classification</topic><topic>Computers</topic><topic>Deep learning</topic><topic>Dermoscopy - methods</topic><topic>Differential evolution</topic><topic>Epidemiology</topic><topic>Evolutionary algorithms</topic><topic>Evolutionary computation</topic><topic>Experimentation</topic><topic>Heuristic methods</topic><topic>Heuristics</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Lesions</topic><topic>Literature reviews</topic><topic>Machine learning</topic><topic>Medicine</topic><topic>Melanoma - diagnosis</topic><topic>Naturvetenskapernas didaktik</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Parameter estimation</topic><topic>Science education</topic><topic>Segmentation</topic><topic>Skin cancer</topic><topic>Skin diseases</topic><topic>Skin Diseases - diagnostic imaging</topic><topic>Skin lesion segmentation</topic><topic>Skin lesions</topic><topic>Skin Neoplasms - diagnosis</topic><topic>Stretching</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Malik, Shairyar</creatorcontrib><creatorcontrib>Islam, S. M. Riazul</creatorcontrib><creatorcontrib>Akram, Tallha</creatorcontrib><creatorcontrib>Naqvi, Syed Rameez</creatorcontrib><creatorcontrib>Alghamdi, Norah Saleh</creatorcontrib><creatorcontrib>Baryannis, George</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing & Allied Health Database</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest_Research Library</collection><collection>Biological Science Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>SwePub</collection><collection>SwePub Articles</collection><jtitle>Computers in biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Malik, Shairyar</au><au>Islam, S. M. Riazul</au><au>Akram, Tallha</au><au>Naqvi, Syed Rameez</au><au>Alghamdi, Norah Saleh</au><au>Baryannis, George</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel hybrid meta-heuristic contrast stretching technique for improved skin lesion segmentation</atitle><jtitle>Computers in biology and medicine</jtitle><addtitle>Comput Biol Med</addtitle><date>2022-12-01</date><risdate>2022</risdate><volume>151</volume><issue>Pt A</issue><spage>106222</spage><epage>106222</epage><pages>106222-106222</pages><artnum>106222</artnum><issn>0010-4825</issn><issn>1879-0534</issn><eissn>1879-0534</eissn><abstract>The high precedence of epidemiological examination of skin lesions necessitated the well-performing efficient classification and segmentation models. In the past two decades, various algorithms, especially machine/deep learning-based methods, replicated the classical visual examination to accomplish the above-mentioned tasks. These automated streams of models demand evident lesions with less background and noise affecting the region of interest. However, even after the proposal of these advanced techniques, there are gaps in achieving the efficacy of matter. Recently, many preprocessors proposed to enhance the contrast of lesions, which further aided the skin lesion segmentation and classification tasks. Metaheuristics are the methods used to support the search space optimisation problems. We propose a novel Hybrid Metaheuristic Differential Evolution-Bat Algorithm (DE-BA), which estimates parameters used in the brightness preserving contrast stretching transformation function. For extensive experimentation we tested our proposed algorithm on various publicly available databases like ISIC 2016, 2017, 2018 and PH2, and validated the proposed model with some state-of-the-art already existing segmentation models. The tabular and visual comparison of the results concluded that DE-BA as a preprocessor positively enhances the segmentation results.
•Implementation of novel Meta-heuristic based contrast stretching algorithm.•A hybrid model for contrast enhancement is named DE-BA.•Datasets accommodated were ISIC-2016, 2017, 2018 and PH2 for experimentation.•Preprocessor validated by segmenting images with three segmentation algorithms.•Enhance image segmentation outperformed original image segmentation results.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>36343406</pmid><doi>10.1016/j.compbiomed.2022.106222</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-6421-6001</orcidid><orcidid>https://orcid.org/0000-0002-2118-5812</orcidid><orcidid>https://orcid.org/0000-0003-2968-9561</orcidid><orcidid>https://orcid.org/0000-0001-6954-926X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-4825 |
ispartof | Computers in biology and medicine, 2022-12, Vol.151 (Pt A), p.106222-106222, Article 106222 |
issn | 0010-4825 1879-0534 1879-0534 |
language | eng |
recordid | cdi_swepub_primary_oai_DiVA_org_mau_62886 |
source | ScienceDirect Freedom Collection |
subjects | Algorithms Background noise Bat algorithm Biology Classification Computers Deep learning Dermoscopy - methods Differential evolution Epidemiology Evolutionary algorithms Evolutionary computation Experimentation Heuristic methods Heuristics Humans Image Processing, Computer-Assisted - methods Lesions Literature reviews Machine learning Medicine Melanoma - diagnosis Naturvetenskapernas didaktik Neural networks Optimization Parameter estimation Science education Segmentation Skin cancer Skin diseases Skin Diseases - diagnostic imaging Skin lesion segmentation Skin lesions Skin Neoplasms - diagnosis Stretching |
title | A novel hybrid meta-heuristic contrast stretching technique for improved skin lesion segmentation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T11%3A27%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20hybrid%20meta-heuristic%20contrast%20stretching%20technique%20for%20improved%20skin%20lesion%20segmentation&rft.jtitle=Computers%20in%20biology%20and%20medicine&rft.au=Malik,%20Shairyar&rft.date=2022-12-01&rft.volume=151&rft.issue=Pt%20A&rft.spage=106222&rft.epage=106222&rft.pages=106222-106222&rft.artnum=106222&rft.issn=0010-4825&rft.eissn=1879-0534&rft_id=info:doi/10.1016/j.compbiomed.2022.106222&rft_dat=%3Cproquest_swepu%3E2741308382%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3546-6d38a35985efa4d538bde7735de1ac023fdf42a1a1775492f2fd2c784f45e05b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2741308382&rft_id=info:pmid/36343406&rfr_iscdi=true |