Loading…

Chain algebras of finite distributive lattices

We introduce a family of toric algebras defined by maximal chains of a finite distributive lattice. Applying results on stable set polytopes, we conclude that every such algebra is normal and Cohen–Macaulay, and give an interpretation of its Krull dimension in terms of the combinatorics of the under...

Full description

Saved in:
Bibliographic Details
Published in:Journal of algebraic combinatorics 2024, Vol.59 (2), p.473-494
Main Authors: Gasanova, Oleksandra, Nicklasson, Lisa
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c351t-247fadc02c413c4cf8a8593d4052ed05fab706eccf23a35e028e6ffa38484d9b3
container_end_page 494
container_issue 2
container_start_page 473
container_title Journal of algebraic combinatorics
container_volume 59
creator Gasanova, Oleksandra
Nicklasson, Lisa
description We introduce a family of toric algebras defined by maximal chains of a finite distributive lattice. Applying results on stable set polytopes, we conclude that every such algebra is normal and Cohen–Macaulay, and give an interpretation of its Krull dimension in terms of the combinatorics of the underlying lattice. When the lattice is planar, we show that the corresponding chain algebra is generated by a sortable set of monomials and is isomorphic to a Hibi ring of another finite distributive lattice. As a consequence, it has a defining toric ideal with a quadratic Gröbner basis, and its h -vector counts ascents in certain standard Young tableaux. If instead the lattice has dimension n > 2 , we show that the defining ideal has minimal generators of degree at least n .
doi_str_mv 10.1007/s10801-023-01294-8
format article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_mdh_66082</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2938501842</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-247fadc02c413c4cf8a8593d4052ed05fab706eccf23a35e028e6ffa38484d9b3</originalsourceid><addsrcrecordid>eNp9kDtPwzAYRS0EEqXwB5giseLy-ZXYY1WeUiUWYLUcx05dtUmxExD_npRUsDHd5dyrq4PQJYEZAShuEgEJBANlGAhVHMsjNCGioFgRRY_RBBQVWEmlTtFZSmsAUJKICZotViY0mdnUrowmZa3PfGhC57IqpC6Gsu_Ch8s2puuCdekcnXizSe7ikFP0en_3snjEy-eHp8V8iS0TpMOUF95UFqjlhFluvTRSKFZxENRVILwpC8idtZ4yw4QDKl3uvWGSS16pkk3R9bibPt2uL_Uuhq2JX7o1Qd-Gt7luY6231UrnOUg64Fcjvovte-9Sp9dtH5vhoaaKSQFE8j1FR8rGNqXo_O8sAb3XqEeNetCofzRqOZTY4ckAN7WLf9P_tL4Bit90ww</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2938501842</pqid></control><display><type>article</type><title>Chain algebras of finite distributive lattices</title><source>Springer Nature</source><creator>Gasanova, Oleksandra ; Nicklasson, Lisa</creator><creatorcontrib>Gasanova, Oleksandra ; Nicklasson, Lisa</creatorcontrib><description>We introduce a family of toric algebras defined by maximal chains of a finite distributive lattice. Applying results on stable set polytopes, we conclude that every such algebra is normal and Cohen–Macaulay, and give an interpretation of its Krull dimension in terms of the combinatorics of the underlying lattice. When the lattice is planar, we show that the corresponding chain algebra is generated by a sortable set of monomials and is isomorphic to a Hibi ring of another finite distributive lattice. As a consequence, it has a defining toric ideal with a quadratic Gröbner basis, and its h -vector counts ascents in certain standard Young tableaux. If instead the lattice has dimension n &gt; 2 , we show that the defining ideal has minimal generators of degree at least n .</description><identifier>ISSN: 0925-9899</identifier><identifier>ISSN: 1572-9192</identifier><identifier>EISSN: 1572-9192</identifier><identifier>DOI: 10.1007/s10801-023-01294-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algebra ; Combinatorial analysis ; Combinatorics ; Computer Science ; Convex and Discrete Geometry ; Group Theory and Generalizations ; Hilbert series ; Koszul algebra ; Lattices ; Lattices (mathematics) ; Mathematics ; Mathematics and Statistics ; Order ; Ordered Algebraic Structures ; Polytopes ; Toric ideal</subject><ispartof>Journal of algebraic combinatorics, 2024, Vol.59 (2), p.473-494</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c351t-247fadc02c413c4cf8a8593d4052ed05fab706eccf23a35e028e6ffa38484d9b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,4010,27900,27901,27902</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-66082$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Gasanova, Oleksandra</creatorcontrib><creatorcontrib>Nicklasson, Lisa</creatorcontrib><title>Chain algebras of finite distributive lattices</title><title>Journal of algebraic combinatorics</title><addtitle>J Algebr Comb</addtitle><description>We introduce a family of toric algebras defined by maximal chains of a finite distributive lattice. Applying results on stable set polytopes, we conclude that every such algebra is normal and Cohen–Macaulay, and give an interpretation of its Krull dimension in terms of the combinatorics of the underlying lattice. When the lattice is planar, we show that the corresponding chain algebra is generated by a sortable set of monomials and is isomorphic to a Hibi ring of another finite distributive lattice. As a consequence, it has a defining toric ideal with a quadratic Gröbner basis, and its h -vector counts ascents in certain standard Young tableaux. If instead the lattice has dimension n &gt; 2 , we show that the defining ideal has minimal generators of degree at least n .</description><subject>Algebra</subject><subject>Combinatorial analysis</subject><subject>Combinatorics</subject><subject>Computer Science</subject><subject>Convex and Discrete Geometry</subject><subject>Group Theory and Generalizations</subject><subject>Hilbert series</subject><subject>Koszul algebra</subject><subject>Lattices</subject><subject>Lattices (mathematics)</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Order</subject><subject>Ordered Algebraic Structures</subject><subject>Polytopes</subject><subject>Toric ideal</subject><issn>0925-9899</issn><issn>1572-9192</issn><issn>1572-9192</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kDtPwzAYRS0EEqXwB5giseLy-ZXYY1WeUiUWYLUcx05dtUmxExD_npRUsDHd5dyrq4PQJYEZAShuEgEJBANlGAhVHMsjNCGioFgRRY_RBBQVWEmlTtFZSmsAUJKICZotViY0mdnUrowmZa3PfGhC57IqpC6Gsu_Ch8s2puuCdekcnXizSe7ikFP0en_3snjEy-eHp8V8iS0TpMOUF95UFqjlhFluvTRSKFZxENRVILwpC8idtZ4yw4QDKl3uvWGSS16pkk3R9bibPt2uL_Uuhq2JX7o1Qd-Gt7luY6231UrnOUg64Fcjvovte-9Sp9dtH5vhoaaKSQFE8j1FR8rGNqXo_O8sAb3XqEeNetCofzRqOZTY4ckAN7WLf9P_tL4Bit90ww</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Gasanova, Oleksandra</creator><creator>Nicklasson, Lisa</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ABGEM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>DF7</scope><scope>ZZAVC</scope></search><sort><creationdate>2024</creationdate><title>Chain algebras of finite distributive lattices</title><author>Gasanova, Oleksandra ; Nicklasson, Lisa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-247fadc02c413c4cf8a8593d4052ed05fab706eccf23a35e028e6ffa38484d9b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algebra</topic><topic>Combinatorial analysis</topic><topic>Combinatorics</topic><topic>Computer Science</topic><topic>Convex and Discrete Geometry</topic><topic>Group Theory and Generalizations</topic><topic>Hilbert series</topic><topic>Koszul algebra</topic><topic>Lattices</topic><topic>Lattices (mathematics)</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Order</topic><topic>Ordered Algebraic Structures</topic><topic>Polytopes</topic><topic>Toric ideal</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gasanova, Oleksandra</creatorcontrib><creatorcontrib>Nicklasson, Lisa</creatorcontrib><collection>Springer Open Access</collection><collection>CrossRef</collection><collection>SWEPUB Mälardalens högskola full text</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Mälardalens högskola</collection><collection>SwePub Articles full text</collection><jtitle>Journal of algebraic combinatorics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gasanova, Oleksandra</au><au>Nicklasson, Lisa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chain algebras of finite distributive lattices</atitle><jtitle>Journal of algebraic combinatorics</jtitle><stitle>J Algebr Comb</stitle><date>2024</date><risdate>2024</risdate><volume>59</volume><issue>2</issue><spage>473</spage><epage>494</epage><pages>473-494</pages><issn>0925-9899</issn><issn>1572-9192</issn><eissn>1572-9192</eissn><abstract>We introduce a family of toric algebras defined by maximal chains of a finite distributive lattice. Applying results on stable set polytopes, we conclude that every such algebra is normal and Cohen–Macaulay, and give an interpretation of its Krull dimension in terms of the combinatorics of the underlying lattice. When the lattice is planar, we show that the corresponding chain algebra is generated by a sortable set of monomials and is isomorphic to a Hibi ring of another finite distributive lattice. As a consequence, it has a defining toric ideal with a quadratic Gröbner basis, and its h -vector counts ascents in certain standard Young tableaux. If instead the lattice has dimension n &gt; 2 , we show that the defining ideal has minimal generators of degree at least n .</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10801-023-01294-8</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0925-9899
ispartof Journal of algebraic combinatorics, 2024, Vol.59 (2), p.473-494
issn 0925-9899
1572-9192
1572-9192
language eng
recordid cdi_swepub_primary_oai_DiVA_org_mdh_66082
source Springer Nature
subjects Algebra
Combinatorial analysis
Combinatorics
Computer Science
Convex and Discrete Geometry
Group Theory and Generalizations
Hilbert series
Koszul algebra
Lattices
Lattices (mathematics)
Mathematics
Mathematics and Statistics
Order
Ordered Algebraic Structures
Polytopes
Toric ideal
title Chain algebras of finite distributive lattices
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T05%3A28%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chain%20algebras%20of%20finite%20distributive%20lattices&rft.jtitle=Journal%20of%20algebraic%20combinatorics&rft.au=Gasanova,%20Oleksandra&rft.date=2024&rft.volume=59&rft.issue=2&rft.spage=473&rft.epage=494&rft.pages=473-494&rft.issn=0925-9899&rft.eissn=1572-9192&rft_id=info:doi/10.1007/s10801-023-01294-8&rft_dat=%3Cproquest_swepu%3E2938501842%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c351t-247fadc02c413c4cf8a8593d4052ed05fab706eccf23a35e028e6ffa38484d9b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2938501842&rft_id=info:pmid/&rfr_iscdi=true