Loading…
Chain algebras of finite distributive lattices
We introduce a family of toric algebras defined by maximal chains of a finite distributive lattice. Applying results on stable set polytopes, we conclude that every such algebra is normal and Cohen–Macaulay, and give an interpretation of its Krull dimension in terms of the combinatorics of the under...
Saved in:
Published in: | Journal of algebraic combinatorics 2024, Vol.59 (2), p.473-494 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c351t-247fadc02c413c4cf8a8593d4052ed05fab706eccf23a35e028e6ffa38484d9b3 |
container_end_page | 494 |
container_issue | 2 |
container_start_page | 473 |
container_title | Journal of algebraic combinatorics |
container_volume | 59 |
creator | Gasanova, Oleksandra Nicklasson, Lisa |
description | We introduce a family of toric algebras defined by maximal chains of a finite distributive lattice. Applying results on stable set polytopes, we conclude that every such algebra is normal and Cohen–Macaulay, and give an interpretation of its Krull dimension in terms of the combinatorics of the underlying lattice. When the lattice is planar, we show that the corresponding chain algebra is generated by a sortable set of monomials and is isomorphic to a Hibi ring of another finite distributive lattice. As a consequence, it has a defining toric ideal with a quadratic Gröbner basis, and its
h
-vector counts ascents in certain standard Young tableaux. If instead the lattice has dimension
n
>
2
, we show that the defining ideal has minimal generators of degree at least
n
. |
doi_str_mv | 10.1007/s10801-023-01294-8 |
format | article |
fullrecord | <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_mdh_66082</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2938501842</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-247fadc02c413c4cf8a8593d4052ed05fab706eccf23a35e028e6ffa38484d9b3</originalsourceid><addsrcrecordid>eNp9kDtPwzAYRS0EEqXwB5giseLy-ZXYY1WeUiUWYLUcx05dtUmxExD_npRUsDHd5dyrq4PQJYEZAShuEgEJBANlGAhVHMsjNCGioFgRRY_RBBQVWEmlTtFZSmsAUJKICZotViY0mdnUrowmZa3PfGhC57IqpC6Gsu_Ch8s2puuCdekcnXizSe7ikFP0en_3snjEy-eHp8V8iS0TpMOUF95UFqjlhFluvTRSKFZxENRVILwpC8idtZ4yw4QDKl3uvWGSS16pkk3R9bibPt2uL_Uuhq2JX7o1Qd-Gt7luY6231UrnOUg64Fcjvovte-9Sp9dtH5vhoaaKSQFE8j1FR8rGNqXo_O8sAb3XqEeNetCofzRqOZTY4ckAN7WLf9P_tL4Bit90ww</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2938501842</pqid></control><display><type>article</type><title>Chain algebras of finite distributive lattices</title><source>Springer Nature</source><creator>Gasanova, Oleksandra ; Nicklasson, Lisa</creator><creatorcontrib>Gasanova, Oleksandra ; Nicklasson, Lisa</creatorcontrib><description>We introduce a family of toric algebras defined by maximal chains of a finite distributive lattice. Applying results on stable set polytopes, we conclude that every such algebra is normal and Cohen–Macaulay, and give an interpretation of its Krull dimension in terms of the combinatorics of the underlying lattice. When the lattice is planar, we show that the corresponding chain algebra is generated by a sortable set of monomials and is isomorphic to a Hibi ring of another finite distributive lattice. As a consequence, it has a defining toric ideal with a quadratic Gröbner basis, and its
h
-vector counts ascents in certain standard Young tableaux. If instead the lattice has dimension
n
>
2
, we show that the defining ideal has minimal generators of degree at least
n
.</description><identifier>ISSN: 0925-9899</identifier><identifier>ISSN: 1572-9192</identifier><identifier>EISSN: 1572-9192</identifier><identifier>DOI: 10.1007/s10801-023-01294-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algebra ; Combinatorial analysis ; Combinatorics ; Computer Science ; Convex and Discrete Geometry ; Group Theory and Generalizations ; Hilbert series ; Koszul algebra ; Lattices ; Lattices (mathematics) ; Mathematics ; Mathematics and Statistics ; Order ; Ordered Algebraic Structures ; Polytopes ; Toric ideal</subject><ispartof>Journal of algebraic combinatorics, 2024, Vol.59 (2), p.473-494</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c351t-247fadc02c413c4cf8a8593d4052ed05fab706eccf23a35e028e6ffa38484d9b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,4010,27900,27901,27902</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-66082$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Gasanova, Oleksandra</creatorcontrib><creatorcontrib>Nicklasson, Lisa</creatorcontrib><title>Chain algebras of finite distributive lattices</title><title>Journal of algebraic combinatorics</title><addtitle>J Algebr Comb</addtitle><description>We introduce a family of toric algebras defined by maximal chains of a finite distributive lattice. Applying results on stable set polytopes, we conclude that every such algebra is normal and Cohen–Macaulay, and give an interpretation of its Krull dimension in terms of the combinatorics of the underlying lattice. When the lattice is planar, we show that the corresponding chain algebra is generated by a sortable set of monomials and is isomorphic to a Hibi ring of another finite distributive lattice. As a consequence, it has a defining toric ideal with a quadratic Gröbner basis, and its
h
-vector counts ascents in certain standard Young tableaux. If instead the lattice has dimension
n
>
2
, we show that the defining ideal has minimal generators of degree at least
n
.</description><subject>Algebra</subject><subject>Combinatorial analysis</subject><subject>Combinatorics</subject><subject>Computer Science</subject><subject>Convex and Discrete Geometry</subject><subject>Group Theory and Generalizations</subject><subject>Hilbert series</subject><subject>Koszul algebra</subject><subject>Lattices</subject><subject>Lattices (mathematics)</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Order</subject><subject>Ordered Algebraic Structures</subject><subject>Polytopes</subject><subject>Toric ideal</subject><issn>0925-9899</issn><issn>1572-9192</issn><issn>1572-9192</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kDtPwzAYRS0EEqXwB5giseLy-ZXYY1WeUiUWYLUcx05dtUmxExD_npRUsDHd5dyrq4PQJYEZAShuEgEJBANlGAhVHMsjNCGioFgRRY_RBBQVWEmlTtFZSmsAUJKICZotViY0mdnUrowmZa3PfGhC57IqpC6Gsu_Ch8s2puuCdekcnXizSe7ikFP0en_3snjEy-eHp8V8iS0TpMOUF95UFqjlhFluvTRSKFZxENRVILwpC8idtZ4yw4QDKl3uvWGSS16pkk3R9bibPt2uL_Uuhq2JX7o1Qd-Gt7luY6231UrnOUg64Fcjvovte-9Sp9dtH5vhoaaKSQFE8j1FR8rGNqXo_O8sAb3XqEeNetCofzRqOZTY4ckAN7WLf9P_tL4Bit90ww</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Gasanova, Oleksandra</creator><creator>Nicklasson, Lisa</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ABGEM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>DF7</scope><scope>ZZAVC</scope></search><sort><creationdate>2024</creationdate><title>Chain algebras of finite distributive lattices</title><author>Gasanova, Oleksandra ; Nicklasson, Lisa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-247fadc02c413c4cf8a8593d4052ed05fab706eccf23a35e028e6ffa38484d9b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algebra</topic><topic>Combinatorial analysis</topic><topic>Combinatorics</topic><topic>Computer Science</topic><topic>Convex and Discrete Geometry</topic><topic>Group Theory and Generalizations</topic><topic>Hilbert series</topic><topic>Koszul algebra</topic><topic>Lattices</topic><topic>Lattices (mathematics)</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Order</topic><topic>Ordered Algebraic Structures</topic><topic>Polytopes</topic><topic>Toric ideal</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gasanova, Oleksandra</creatorcontrib><creatorcontrib>Nicklasson, Lisa</creatorcontrib><collection>Springer Open Access</collection><collection>CrossRef</collection><collection>SWEPUB Mälardalens högskola full text</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Mälardalens högskola</collection><collection>SwePub Articles full text</collection><jtitle>Journal of algebraic combinatorics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gasanova, Oleksandra</au><au>Nicklasson, Lisa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chain algebras of finite distributive lattices</atitle><jtitle>Journal of algebraic combinatorics</jtitle><stitle>J Algebr Comb</stitle><date>2024</date><risdate>2024</risdate><volume>59</volume><issue>2</issue><spage>473</spage><epage>494</epage><pages>473-494</pages><issn>0925-9899</issn><issn>1572-9192</issn><eissn>1572-9192</eissn><abstract>We introduce a family of toric algebras defined by maximal chains of a finite distributive lattice. Applying results on stable set polytopes, we conclude that every such algebra is normal and Cohen–Macaulay, and give an interpretation of its Krull dimension in terms of the combinatorics of the underlying lattice. When the lattice is planar, we show that the corresponding chain algebra is generated by a sortable set of monomials and is isomorphic to a Hibi ring of another finite distributive lattice. As a consequence, it has a defining toric ideal with a quadratic Gröbner basis, and its
h
-vector counts ascents in certain standard Young tableaux. If instead the lattice has dimension
n
>
2
, we show that the defining ideal has minimal generators of degree at least
n
.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10801-023-01294-8</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-9899 |
ispartof | Journal of algebraic combinatorics, 2024, Vol.59 (2), p.473-494 |
issn | 0925-9899 1572-9192 1572-9192 |
language | eng |
recordid | cdi_swepub_primary_oai_DiVA_org_mdh_66082 |
source | Springer Nature |
subjects | Algebra Combinatorial analysis Combinatorics Computer Science Convex and Discrete Geometry Group Theory and Generalizations Hilbert series Koszul algebra Lattices Lattices (mathematics) Mathematics Mathematics and Statistics Order Ordered Algebraic Structures Polytopes Toric ideal |
title | Chain algebras of finite distributive lattices |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T05%3A28%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chain%20algebras%20of%20finite%20distributive%20lattices&rft.jtitle=Journal%20of%20algebraic%20combinatorics&rft.au=Gasanova,%20Oleksandra&rft.date=2024&rft.volume=59&rft.issue=2&rft.spage=473&rft.epage=494&rft.pages=473-494&rft.issn=0925-9899&rft.eissn=1572-9192&rft_id=info:doi/10.1007/s10801-023-01294-8&rft_dat=%3Cproquest_swepu%3E2938501842%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c351t-247fadc02c413c4cf8a8593d4052ed05fab706eccf23a35e028e6ffa38484d9b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2938501842&rft_id=info:pmid/&rfr_iscdi=true |