Loading…

DRL-Driven Optimization of a Wireless Powered Symbiotic Radio With Nonlinear EH Model

Given the rising demand for low-power sensing, integrating additional devices into an existing wireless infrastructure calls for innovative energy- and spectrum-efficient wireless connectivity strategies. In this respect, wireless-powered or energy-harvesting symbiotic radio (EHSR) is gaining attent...

Full description

Saved in:
Bibliographic Details
Published in:IEEE open journal of the Communications Society 2024, Vol.5, p.5232-5247
Main Authors: Ullah, Syed Asad, Mahmood, Aamir, Nasir, Ali Arshad, Gidlund, Mikael, Hassan, Syed Ali
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c282t-110cd3537926b29f7654cc1f99e3763c2a507691e58a548447fad71ebef43a713
container_end_page 5247
container_issue
container_start_page 5232
container_title IEEE open journal of the Communications Society
container_volume 5
creator Ullah, Syed Asad
Mahmood, Aamir
Nasir, Ali Arshad
Gidlund, Mikael
Hassan, Syed Ali
description Given the rising demand for low-power sensing, integrating additional devices into an existing wireless infrastructure calls for innovative energy- and spectrum-efficient wireless connectivity strategies. In this respect, wireless-powered or energy-harvesting symbiotic radio (EHSR) is gaining attention for establishing the secondary relationship with the primary wireless systems in terms of RF EH and opportunistically sharing the spectrum or schedule. In this paper, assuming the commensalistic relationship with the primary system, we consider the energy-efficient optimization of such an EHSR by intelligently making EH and transmission decisions under the inherent nonlinearity of the EH circuitry and dynamics of pre-scheduled primary devices. We present a state-of-the-art deep reinforcement learning (DRL)-engineered, energy-efficient transmission strategy, which intelligently orchestrates EHSR's uplink transmissions, leveraging the cognitive radio-inspired non-orthogonal multiple access (CR-NOMA) scheme. We first formulate the energy efficiency (EE) optimization metric for EHSR considering the nonlinear EH model, and then we decompose the inherently complex, non-convex problem into two optimization layers. The strategy first derives the optimal transmit power and time-sharing coefficient parameters, using convex optimization. Subsequently, these inferred parameters are substituted in the subsequent layer, where the optimization problem with continuous action space is addressed via a DRL framework, named modified deep deterministic policy gradient (MDDPG). Simulation results reveal that, compared to the baseline DDPG algorithm, our proposed solution provides a 6% EE gain with the linear EH model and approximately a 7% EE gain with the non-linear EH model.
doi_str_mv 10.1109/OJCOMS.2024.3447152
format article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_miun_52343</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10643143</ieee_id><doaj_id>oai_doaj_org_article_620d8f98e01243c398e876e314a067db</doaj_id><sourcerecordid>3100625643</sourcerecordid><originalsourceid>FETCH-LOGICAL-c282t-110cd3537926b29f7654cc1f99e3763c2a507691e58a548447fad71ebef43a713</originalsourceid><addsrcrecordid>eNpVkU1P3DAQhiNUJBDwC8rBUs9ZPP5MjmiXFtDSRXy0vVlOMqFeZeOtnQXBr8dsUAUnj6znfTSjN8u-Ap0A0PJkcTldXN1OGGViwoXQINlOts-UEDkw-efLh3kvO4pxSSllEgC42M_uZzfzfBbcI_ZksR7cyr3Ywfme-JZY8tsF7DBGcu2fMGBDbp9XlfODq8mNbZxPwPCX_PR953q0gZydkyvfYHeY7ba2i3j0_h5k99_P7qbn-Xzx42J6Os9rVrAhT-vXDZdcl0xVrGy1kqKuoS1L5FrxmllJtSoBZWGlKNJtrW00YIWt4FYDP8guRm_j7dKsg1vZ8Gy8dWb74cODsSFt26FRjDZFWxZIgQle8zQVWiEHYanSTZVc-eiKT7jeVJ9sM_frdGtbuU1vJOOCJ_7byK-D_7fBOJil34Q-nWs4UKqYVFuKj1QdfIwB2_9eoOatPjPWZ97qM-_1pdTxmHKI-CGRjJCkrzZqlCk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3100625643</pqid></control><display><type>article</type><title>DRL-Driven Optimization of a Wireless Powered Symbiotic Radio With Nonlinear EH Model</title><source>IEEE Open Access Journals</source><creator>Ullah, Syed Asad ; Mahmood, Aamir ; Nasir, Ali Arshad ; Gidlund, Mikael ; Hassan, Syed Ali</creator><creatorcontrib>Ullah, Syed Asad ; Mahmood, Aamir ; Nasir, Ali Arshad ; Gidlund, Mikael ; Hassan, Syed Ali</creatorcontrib><description>Given the rising demand for low-power sensing, integrating additional devices into an existing wireless infrastructure calls for innovative energy- and spectrum-efficient wireless connectivity strategies. In this respect, wireless-powered or energy-harvesting symbiotic radio (EHSR) is gaining attention for establishing the secondary relationship with the primary wireless systems in terms of RF EH and opportunistically sharing the spectrum or schedule. In this paper, assuming the commensalistic relationship with the primary system, we consider the energy-efficient optimization of such an EHSR by intelligently making EH and transmission decisions under the inherent nonlinearity of the EH circuitry and dynamics of pre-scheduled primary devices. We present a state-of-the-art deep reinforcement learning (DRL)-engineered, energy-efficient transmission strategy, which intelligently orchestrates EHSR's uplink transmissions, leveraging the cognitive radio-inspired non-orthogonal multiple access (CR-NOMA) scheme. We first formulate the energy efficiency (EE) optimization metric for EHSR considering the nonlinear EH model, and then we decompose the inherently complex, non-convex problem into two optimization layers. The strategy first derives the optimal transmit power and time-sharing coefficient parameters, using convex optimization. Subsequently, these inferred parameters are substituted in the subsequent layer, where the optimization problem with continuous action space is addressed via a DRL framework, named modified deep deterministic policy gradient (MDDPG). Simulation results reveal that, compared to the baseline DDPG algorithm, our proposed solution provides a 6% EE gain with the linear EH model and approximately a 7% EE gain with the non-linear EH model.</description><identifier>ISSN: 2644-125X</identifier><identifier>EISSN: 2644-125X</identifier><identifier>DOI: 10.1109/OJCOMS.2024.3447152</identifier><identifier>CODEN: IOJCAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Circuits ; Cognitive radio ; cognitive radio-inspired non-orthogonal multiple access (CR-NOMA) ; Convexity ; deep deterministic policy gradient (DDPG) ; Energy efficiency ; energy efficiency (EE) ; Energy harvesting ; Integrated circuit modeling ; NOMA ; Nonlinearity ; Nonorthogonal multiple access ; Optimization ; Parameter modification ; Power management ; Radio frequency ; RF EH ; Signal processing algorithms ; Symbiosis ; Symbiotic radio ; Wireless communication</subject><ispartof>IEEE open journal of the Communications Society, 2024, Vol.5, p.5232-5247</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c282t-110cd3537926b29f7654cc1f99e3763c2a507691e58a548447fad71ebef43a713</cites><orcidid>0000-0003-4983-7760 ; 0000-0003-0873-7827 ; 0000-0002-8572-7377 ; 0000-0003-3717-7793 ; 0000-0001-5012-1562</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10643143$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,4010,27610,27900,27901,27902,54908</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-52343$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Ullah, Syed Asad</creatorcontrib><creatorcontrib>Mahmood, Aamir</creatorcontrib><creatorcontrib>Nasir, Ali Arshad</creatorcontrib><creatorcontrib>Gidlund, Mikael</creatorcontrib><creatorcontrib>Hassan, Syed Ali</creatorcontrib><title>DRL-Driven Optimization of a Wireless Powered Symbiotic Radio With Nonlinear EH Model</title><title>IEEE open journal of the Communications Society</title><addtitle>OJCOMS</addtitle><description>Given the rising demand for low-power sensing, integrating additional devices into an existing wireless infrastructure calls for innovative energy- and spectrum-efficient wireless connectivity strategies. In this respect, wireless-powered or energy-harvesting symbiotic radio (EHSR) is gaining attention for establishing the secondary relationship with the primary wireless systems in terms of RF EH and opportunistically sharing the spectrum or schedule. In this paper, assuming the commensalistic relationship with the primary system, we consider the energy-efficient optimization of such an EHSR by intelligently making EH and transmission decisions under the inherent nonlinearity of the EH circuitry and dynamics of pre-scheduled primary devices. We present a state-of-the-art deep reinforcement learning (DRL)-engineered, energy-efficient transmission strategy, which intelligently orchestrates EHSR's uplink transmissions, leveraging the cognitive radio-inspired non-orthogonal multiple access (CR-NOMA) scheme. We first formulate the energy efficiency (EE) optimization metric for EHSR considering the nonlinear EH model, and then we decompose the inherently complex, non-convex problem into two optimization layers. The strategy first derives the optimal transmit power and time-sharing coefficient parameters, using convex optimization. Subsequently, these inferred parameters are substituted in the subsequent layer, where the optimization problem with continuous action space is addressed via a DRL framework, named modified deep deterministic policy gradient (MDDPG). Simulation results reveal that, compared to the baseline DDPG algorithm, our proposed solution provides a 6% EE gain with the linear EH model and approximately a 7% EE gain with the non-linear EH model.</description><subject>Algorithms</subject><subject>Circuits</subject><subject>Cognitive radio</subject><subject>cognitive radio-inspired non-orthogonal multiple access (CR-NOMA)</subject><subject>Convexity</subject><subject>deep deterministic policy gradient (DDPG)</subject><subject>Energy efficiency</subject><subject>energy efficiency (EE)</subject><subject>Energy harvesting</subject><subject>Integrated circuit modeling</subject><subject>NOMA</subject><subject>Nonlinearity</subject><subject>Nonorthogonal multiple access</subject><subject>Optimization</subject><subject>Parameter modification</subject><subject>Power management</subject><subject>Radio frequency</subject><subject>RF EH</subject><subject>Signal processing algorithms</subject><subject>Symbiosis</subject><subject>Symbiotic radio</subject><subject>Wireless communication</subject><issn>2644-125X</issn><issn>2644-125X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpVkU1P3DAQhiNUJBDwC8rBUs9ZPP5MjmiXFtDSRXy0vVlOMqFeZeOtnQXBr8dsUAUnj6znfTSjN8u-Ap0A0PJkcTldXN1OGGViwoXQINlOts-UEDkw-efLh3kvO4pxSSllEgC42M_uZzfzfBbcI_ZksR7cyr3Ywfme-JZY8tsF7DBGcu2fMGBDbp9XlfODq8mNbZxPwPCX_PR953q0gZydkyvfYHeY7ba2i3j0_h5k99_P7qbn-Xzx42J6Os9rVrAhT-vXDZdcl0xVrGy1kqKuoS1L5FrxmllJtSoBZWGlKNJtrW00YIWt4FYDP8guRm_j7dKsg1vZ8Gy8dWb74cODsSFt26FRjDZFWxZIgQle8zQVWiEHYanSTZVc-eiKT7jeVJ9sM_frdGtbuU1vJOOCJ_7byK-D_7fBOJil34Q-nWs4UKqYVFuKj1QdfIwB2_9eoOatPjPWZ97qM-_1pdTxmHKI-CGRjJCkrzZqlCk</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Ullah, Syed Asad</creator><creator>Mahmood, Aamir</creator><creator>Nasir, Ali Arshad</creator><creator>Gidlund, Mikael</creator><creator>Hassan, Syed Ali</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>ADTPV</scope><scope>AKRZP</scope><scope>AOWAS</scope><scope>D8T</scope><scope>DG5</scope><scope>ZZAVC</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4983-7760</orcidid><orcidid>https://orcid.org/0000-0003-0873-7827</orcidid><orcidid>https://orcid.org/0000-0002-8572-7377</orcidid><orcidid>https://orcid.org/0000-0003-3717-7793</orcidid><orcidid>https://orcid.org/0000-0001-5012-1562</orcidid></search><sort><creationdate>2024</creationdate><title>DRL-Driven Optimization of a Wireless Powered Symbiotic Radio With Nonlinear EH Model</title><author>Ullah, Syed Asad ; Mahmood, Aamir ; Nasir, Ali Arshad ; Gidlund, Mikael ; Hassan, Syed Ali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c282t-110cd3537926b29f7654cc1f99e3763c2a507691e58a548447fad71ebef43a713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Circuits</topic><topic>Cognitive radio</topic><topic>cognitive radio-inspired non-orthogonal multiple access (CR-NOMA)</topic><topic>Convexity</topic><topic>deep deterministic policy gradient (DDPG)</topic><topic>Energy efficiency</topic><topic>energy efficiency (EE)</topic><topic>Energy harvesting</topic><topic>Integrated circuit modeling</topic><topic>NOMA</topic><topic>Nonlinearity</topic><topic>Nonorthogonal multiple access</topic><topic>Optimization</topic><topic>Parameter modification</topic><topic>Power management</topic><topic>Radio frequency</topic><topic>RF EH</topic><topic>Signal processing algorithms</topic><topic>Symbiosis</topic><topic>Symbiotic radio</topic><topic>Wireless communication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ullah, Syed Asad</creatorcontrib><creatorcontrib>Mahmood, Aamir</creatorcontrib><creatorcontrib>Nasir, Ali Arshad</creatorcontrib><creatorcontrib>Gidlund, Mikael</creatorcontrib><creatorcontrib>Hassan, Syed Ali</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>SwePub</collection><collection>SWEPUB Mittuniversitetet full text</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Mittuniversitetet</collection><collection>SwePub Articles full text</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE open journal of the Communications Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ullah, Syed Asad</au><au>Mahmood, Aamir</au><au>Nasir, Ali Arshad</au><au>Gidlund, Mikael</au><au>Hassan, Syed Ali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DRL-Driven Optimization of a Wireless Powered Symbiotic Radio With Nonlinear EH Model</atitle><jtitle>IEEE open journal of the Communications Society</jtitle><stitle>OJCOMS</stitle><date>2024</date><risdate>2024</risdate><volume>5</volume><spage>5232</spage><epage>5247</epage><pages>5232-5247</pages><issn>2644-125X</issn><eissn>2644-125X</eissn><coden>IOJCAZ</coden><abstract>Given the rising demand for low-power sensing, integrating additional devices into an existing wireless infrastructure calls for innovative energy- and spectrum-efficient wireless connectivity strategies. In this respect, wireless-powered or energy-harvesting symbiotic radio (EHSR) is gaining attention for establishing the secondary relationship with the primary wireless systems in terms of RF EH and opportunistically sharing the spectrum or schedule. In this paper, assuming the commensalistic relationship with the primary system, we consider the energy-efficient optimization of such an EHSR by intelligently making EH and transmission decisions under the inherent nonlinearity of the EH circuitry and dynamics of pre-scheduled primary devices. We present a state-of-the-art deep reinforcement learning (DRL)-engineered, energy-efficient transmission strategy, which intelligently orchestrates EHSR's uplink transmissions, leveraging the cognitive radio-inspired non-orthogonal multiple access (CR-NOMA) scheme. We first formulate the energy efficiency (EE) optimization metric for EHSR considering the nonlinear EH model, and then we decompose the inherently complex, non-convex problem into two optimization layers. The strategy first derives the optimal transmit power and time-sharing coefficient parameters, using convex optimization. Subsequently, these inferred parameters are substituted in the subsequent layer, where the optimization problem with continuous action space is addressed via a DRL framework, named modified deep deterministic policy gradient (MDDPG). Simulation results reveal that, compared to the baseline DDPG algorithm, our proposed solution provides a 6% EE gain with the linear EH model and approximately a 7% EE gain with the non-linear EH model.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/OJCOMS.2024.3447152</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-4983-7760</orcidid><orcidid>https://orcid.org/0000-0003-0873-7827</orcidid><orcidid>https://orcid.org/0000-0002-8572-7377</orcidid><orcidid>https://orcid.org/0000-0003-3717-7793</orcidid><orcidid>https://orcid.org/0000-0001-5012-1562</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2644-125X
ispartof IEEE open journal of the Communications Society, 2024, Vol.5, p.5232-5247
issn 2644-125X
2644-125X
language eng
recordid cdi_swepub_primary_oai_DiVA_org_miun_52343
source IEEE Open Access Journals
subjects Algorithms
Circuits
Cognitive radio
cognitive radio-inspired non-orthogonal multiple access (CR-NOMA)
Convexity
deep deterministic policy gradient (DDPG)
Energy efficiency
energy efficiency (EE)
Energy harvesting
Integrated circuit modeling
NOMA
Nonlinearity
Nonorthogonal multiple access
Optimization
Parameter modification
Power management
Radio frequency
RF EH
Signal processing algorithms
Symbiosis
Symbiotic radio
Wireless communication
title DRL-Driven Optimization of a Wireless Powered Symbiotic Radio With Nonlinear EH Model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T02%3A47%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DRL-Driven%20Optimization%20of%20a%20Wireless%20Powered%20Symbiotic%20Radio%20With%20Nonlinear%20EH%20Model&rft.jtitle=IEEE%20open%20journal%20of%20the%20Communications%20Society&rft.au=Ullah,%20Syed%20Asad&rft.date=2024&rft.volume=5&rft.spage=5232&rft.epage=5247&rft.pages=5232-5247&rft.issn=2644-125X&rft.eissn=2644-125X&rft.coden=IOJCAZ&rft_id=info:doi/10.1109/OJCOMS.2024.3447152&rft_dat=%3Cproquest_swepu%3E3100625643%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c282t-110cd3537926b29f7654cc1f99e3763c2a507691e58a548447fad71ebef43a713%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3100625643&rft_id=info:pmid/&rft_ieee_id=10643143&rfr_iscdi=true