Loading…
A flexible multi-body approach for frictional contact in spur gears
In the present paper, a large rotational approach for dynamic contact problems with friction is proposed. The approach is used for modelling a spur gear pair with shafts and bearings. The model is obtained by superposing small displacement elasticity on rigid-body motions, and postulating tribologic...
Saved in:
Published in: | Journal of sound and vibration 2004, Vol.278 (3), p.479-499 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In the present paper, a large rotational approach for dynamic contact problems with friction is proposed. The approach is used for modelling a spur gear pair with shafts and bearings. The model is obtained by superposing small displacement elasticity on rigid-body motions, and postulating tribological laws on the gear flanks. The finite element method is used to model the elastic properties of the gear pair. Shafts and bearings are represented by linear springs. The tribological laws of the contact interface are Signorini's contact law and Coulomb's law of friction. An important feature of the approach is that the difficulties of impacting mass nodes are avoided. The governing equations of the model are numerically treated by use of the augmented Lagrangian approach. In such manner the geometry of the gear flanks are well represented in the numerical simulations. It is possible to study accurately the consequences of different types of profile modifications as well as flank errors. In this work, the dynamic transmission error is studied. For instance, it turns out that the effect from profile modification is less significant for the transmission error when frictional effects are included. |
---|---|
ISSN: | 0022-460X 1095-8568 1095-8568 |
DOI: | 10.1016/j.jsv.2003.10.057 |