Loading…
Using Hansen solubility parameters to predict the dispersion of nano-particles in polymeric films
We suggest a rough and straightforward method to predict the dispersibility of modified cellulose nanocrystals (CNC) in nanocomposites using Hansen solubility parameters (HSP). The surface of CNC was modified using a novel approach where Y-shaped substituents with two different carbon chain lengths...
Saved in:
Published in: | Polymer chemistry 2016-01, Vol.7 (9), p.1756-1764 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We suggest a rough and straightforward method to predict the dispersibility of modified cellulose nanocrystals (CNC) in nanocomposites using Hansen solubility parameters (HSP). The surface of CNC was modified using a novel approach where Y-shaped substituents with two different carbon chain lengths were attached to the surface. Approximate HSP values were calculated for the modified CNC, and dispersions of unmodified and modified CNC in solvents with varying HSPs were studied. The best dispersibility was observed in dichloromethane, when the CNC surface was modified with longer carbon chains. Dichloromethane has HSP similar to low-density polyethylene (LDPE). Nanocomposites with both unmodified and modified CNC were produced. The materials with modified CNC showed increased adhesion between the filler and the matrix, followed by a decreased water permeability compared to unmodified CNC, suggesting a better dispersibility of modified CNC in LDPE and confirming the usefulness of this approach.
A new surface modification followed by calculation of Hansen solubility parameters to predict dispersability of cellulose nanocrystals in LDPE is presented. |
---|---|
ISSN: | 1759-9954 1759-9962 1759-9962 |
DOI: | 10.1039/c5py01935d |