Loading…
Functional assembly of camphor converting two-component Baeyer–Villiger monooxygenases with a flavin reductase from E. coli
The major limitation in the synthetic application of two-component Baeyer–Villiger monooxygenases was addressed by identifying the 28-kDa flavin-reductase Fre from Escherichia coli as a suitable supplier of reduced FMN for these enzymes. Coexpression of Fre with either 2,5- or 3,6-diketocamphane mon...
Saved in:
Published in: | Applied microbiology and biotechnology 2014-05, Vol.98 (9), p.3975-3986 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c647t-9c5a98ddf08430337c7d15b010f1bf2b3b9dd9895ae4d11d6d2f6ff9995685893 |
---|---|
cites | cdi_FETCH-LOGICAL-c647t-9c5a98ddf08430337c7d15b010f1bf2b3b9dd9895ae4d11d6d2f6ff9995685893 |
container_end_page | 3986 |
container_issue | 9 |
container_start_page | 3975 |
container_title | Applied microbiology and biotechnology |
container_volume | 98 |
creator | Kadow, Maria Balke, Kathleen Willetts, Andrew Bornscheuer, Uwe T Bäckvall, J.-E |
description | The major limitation in the synthetic application of two-component Baeyer–Villiger monooxygenases was addressed by identifying the 28-kDa flavin-reductase Fre from Escherichia coli as a suitable supplier of reduced FMN for these enzymes. Coexpression of Fre with either 2,5- or 3,6-diketocamphane monooxygenase from Pseudomonas putida NCIMB 10007 significantly enhanced the conversion of camphor and norcamphor serving as representative ketones. With purified enzymes, full conversion was achieved, while only slight amounts of product were formed in the absence of this flavin reductase. Fusion of the genes of Fre and DKCMOs into single open reading frame constructs resulted in unstable proteins exhibiting flavin reducing, but poor oxygenating activity, which led to overall decreased conversion of camphor. |
doi_str_mv | 10.1007/s00253-013-5338-3 |
format | article |
fullrecord | <record><control><sourceid>gale_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_su_104410</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A370443957</galeid><sourcerecordid>A370443957</sourcerecordid><originalsourceid>FETCH-LOGICAL-c647t-9c5a98ddf08430337c7d15b010f1bf2b3b9dd9895ae4d11d6d2f6ff9995685893</originalsourceid><addsrcrecordid>eNqNkstu1DAUhiMEokPhAdiAJTYgkeH4kouXQy9QqRISpd1aTmKnrhJ7aiedzqIS78Ab8iR4lKEwCCHkhSWf7__lc86fJM8xzDFA8S4AkIymgGmaUVqm9EEyw4ySFHLMHiYzwEWWFhkv95InIVwBYFLm-eNkjzDMgfFyltwdj7YejLOyQzIE1VfdGjmNatkvL51HtbM3yg_GtmhYubR2_dJZZQf0Xqq18t-_frswXWda5VHvrHO361ZZGVRAKzNcIol0J2-MRV41Yz3EAtLe9ehoHp078zR5pGUX1LPtvZ-cHx99OfiYnn76cHKwOE3rnBVDyutM8rJpNJSMAqVFXTQ4qwCDxpUmFa140_CSZ1KxBuMmb4jOteacZ3mZlZzuJ28n37BSy7ESS2966dfCSSMOzcVCON-KMAoMjGGI-OsJX3p3PaowiN6EWnWdtMqNQeCMAC14Qcr_QHFeEJrzjeurP9ArN_o4-IkCRhktflGt7JQwVrvBy3pjKha0iP-jPNtQ879Q8TSqN3FnSpv4viN4syOIzKBuh1aOIYiTs8-7LJ7Y2rsQvNL388IgNsETU_BEDJ7YBE_QqHmxbW6setXcK34mLQJku4JYsjEvv3X_D9eXk0hLJ2TrTRDnZwQwA4C4WcLpD_YL61c</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1516043437</pqid></control><display><type>article</type><title>Functional assembly of camphor converting two-component Baeyer–Villiger monooxygenases with a flavin reductase from E. coli</title><source>ABI/INFORM Global</source><source>Springer Link</source><creator>Kadow, Maria ; Balke, Kathleen ; Willetts, Andrew ; Bornscheuer, Uwe T ; Bäckvall, J.-E</creator><creatorcontrib>Kadow, Maria ; Balke, Kathleen ; Willetts, Andrew ; Bornscheuer, Uwe T ; Bäckvall, J.-E</creatorcontrib><description>The major limitation in the synthetic application of two-component Baeyer–Villiger monooxygenases was addressed by identifying the 28-kDa flavin-reductase Fre from Escherichia coli as a suitable supplier of reduced FMN for these enzymes. Coexpression of Fre with either 2,5- or 3,6-diketocamphane monooxygenase from Pseudomonas putida NCIMB 10007 significantly enhanced the conversion of camphor and norcamphor serving as representative ketones. With purified enzymes, full conversion was achieved, while only slight amounts of product were formed in the absence of this flavin reductase. Fusion of the genes of Fre and DKCMOs into single open reading frame constructs resulted in unstable proteins exhibiting flavin reducing, but poor oxygenating activity, which led to overall decreased conversion of camphor.</description><identifier>ISSN: 0175-7598</identifier><identifier>ISSN: 1432-0614</identifier><identifier>EISSN: 1432-0614</identifier><identifier>DOI: 10.1007/s00253-013-5338-3</identifier><identifier>PMID: 24190498</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Analysis ; Baeyer-Villiger monooxygenases ; Biocatalysts ; Biochemistry ; Biomedical and Life Sciences ; Biosynthesis ; Biotechnologically Relevant Enzymes and Proteins ; Biotechnology ; Camphor ; Camphor - metabolism ; Catalysis ; Coenzymes - metabolism ; E coli ; Enzymes ; Escherichia coli ; Escherichia coli - enzymology ; Escherichia coli - metabolism ; Escherichia coli Proteins - genetics ; Escherichia coli Proteins - metabolism ; Flavin Mononucleotide - metabolism ; Flavin reductase ; FMN Reductase - genetics ; FMN Reductase - metabolism ; Fre ; Fusion protein ; Gene Expression ; Genes ; ketones ; Life Sciences ; Microbial Genetics and Genomics ; Microbiology ; Mixed Function Oxygenases - genetics ; Mixed Function Oxygenases - metabolism ; Multi-component flavin-dependent monooxygenases ; open reading frames ; Organic chemistry ; Oxidases ; Physiological aspects ; Polypeptides ; Proteins ; Pseudomonas putida ; Pseudomonas putida - enzymology ; Pseudomonas putida - metabolism ; Pseudomonas putida NCIMB10007 ; Recombinant Fusion Proteins - genetics ; Recombinant Fusion Proteins - metabolism ; Studies</subject><ispartof>Applied microbiology and biotechnology, 2014-05, Vol.98 (9), p.3975-3986</ispartof><rights>Springer-Verlag Berlin Heidelberg 2013</rights><rights>COPYRIGHT 2014 Springer</rights><rights>Springer-Verlag Berlin Heidelberg 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c647t-9c5a98ddf08430337c7d15b010f1bf2b3b9dd9895ae4d11d6d2f6ff9995685893</citedby><cites>FETCH-LOGICAL-c647t-9c5a98ddf08430337c7d15b010f1bf2b3b9dd9895ae4d11d6d2f6ff9995685893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1516043437/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1516043437?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>230,314,780,784,885,11688,27924,27925,36060,36061,44363,74895</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24190498$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-104410$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Kadow, Maria</creatorcontrib><creatorcontrib>Balke, Kathleen</creatorcontrib><creatorcontrib>Willetts, Andrew</creatorcontrib><creatorcontrib>Bornscheuer, Uwe T</creatorcontrib><creatorcontrib>Bäckvall, J.-E</creatorcontrib><title>Functional assembly of camphor converting two-component Baeyer–Villiger monooxygenases with a flavin reductase from E. coli</title><title>Applied microbiology and biotechnology</title><addtitle>Appl Microbiol Biotechnol</addtitle><addtitle>Appl Microbiol Biotechnol</addtitle><description>The major limitation in the synthetic application of two-component Baeyer–Villiger monooxygenases was addressed by identifying the 28-kDa flavin-reductase Fre from Escherichia coli as a suitable supplier of reduced FMN for these enzymes. Coexpression of Fre with either 2,5- or 3,6-diketocamphane monooxygenase from Pseudomonas putida NCIMB 10007 significantly enhanced the conversion of camphor and norcamphor serving as representative ketones. With purified enzymes, full conversion was achieved, while only slight amounts of product were formed in the absence of this flavin reductase. Fusion of the genes of Fre and DKCMOs into single open reading frame constructs resulted in unstable proteins exhibiting flavin reducing, but poor oxygenating activity, which led to overall decreased conversion of camphor.</description><subject>Analysis</subject><subject>Baeyer-Villiger monooxygenases</subject><subject>Biocatalysts</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biosynthesis</subject><subject>Biotechnologically Relevant Enzymes and Proteins</subject><subject>Biotechnology</subject><subject>Camphor</subject><subject>Camphor - metabolism</subject><subject>Catalysis</subject><subject>Coenzymes - metabolism</subject><subject>E coli</subject><subject>Enzymes</subject><subject>Escherichia coli</subject><subject>Escherichia coli - enzymology</subject><subject>Escherichia coli - metabolism</subject><subject>Escherichia coli Proteins - genetics</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>Flavin Mononucleotide - metabolism</subject><subject>Flavin reductase</subject><subject>FMN Reductase - genetics</subject><subject>FMN Reductase - metabolism</subject><subject>Fre</subject><subject>Fusion protein</subject><subject>Gene Expression</subject><subject>Genes</subject><subject>ketones</subject><subject>Life Sciences</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Mixed Function Oxygenases - genetics</subject><subject>Mixed Function Oxygenases - metabolism</subject><subject>Multi-component flavin-dependent monooxygenases</subject><subject>open reading frames</subject><subject>Organic chemistry</subject><subject>Oxidases</subject><subject>Physiological aspects</subject><subject>Polypeptides</subject><subject>Proteins</subject><subject>Pseudomonas putida</subject><subject>Pseudomonas putida - enzymology</subject><subject>Pseudomonas putida - metabolism</subject><subject>Pseudomonas putida NCIMB10007</subject><subject>Recombinant Fusion Proteins - genetics</subject><subject>Recombinant Fusion Proteins - metabolism</subject><subject>Studies</subject><issn>0175-7598</issn><issn>1432-0614</issn><issn>1432-0614</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNqNkstu1DAUhiMEokPhAdiAJTYgkeH4kouXQy9QqRISpd1aTmKnrhJ7aiedzqIS78Ab8iR4lKEwCCHkhSWf7__lc86fJM8xzDFA8S4AkIymgGmaUVqm9EEyw4ySFHLMHiYzwEWWFhkv95InIVwBYFLm-eNkjzDMgfFyltwdj7YejLOyQzIE1VfdGjmNatkvL51HtbM3yg_GtmhYubR2_dJZZQf0Xqq18t-_frswXWda5VHvrHO361ZZGVRAKzNcIol0J2-MRV41Yz3EAtLe9ehoHp078zR5pGUX1LPtvZ-cHx99OfiYnn76cHKwOE3rnBVDyutM8rJpNJSMAqVFXTQ4qwCDxpUmFa140_CSZ1KxBuMmb4jOteacZ3mZlZzuJ28n37BSy7ESS2966dfCSSMOzcVCON-KMAoMjGGI-OsJX3p3PaowiN6EWnWdtMqNQeCMAC14Qcr_QHFeEJrzjeurP9ArN_o4-IkCRhktflGt7JQwVrvBy3pjKha0iP-jPNtQ879Q8TSqN3FnSpv4viN4syOIzKBuh1aOIYiTs8-7LJ7Y2rsQvNL388IgNsETU_BEDJ7YBE_QqHmxbW6setXcK34mLQJku4JYsjEvv3X_D9eXk0hLJ2TrTRDnZwQwA4C4WcLpD_YL61c</recordid><startdate>20140501</startdate><enddate>20140501</enddate><creator>Kadow, Maria</creator><creator>Balke, Kathleen</creator><creator>Willetts, Andrew</creator><creator>Bornscheuer, Uwe T</creator><creator>Bäckvall, J.-E</creator><general>Springer-Verlag</general><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>7QO</scope><scope>ABAVF</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>DG7</scope><scope>ZZAVC</scope></search><sort><creationdate>20140501</creationdate><title>Functional assembly of camphor converting two-component Baeyer–Villiger monooxygenases with a flavin reductase from E. coli</title><author>Kadow, Maria ; Balke, Kathleen ; Willetts, Andrew ; Bornscheuer, Uwe T ; Bäckvall, J.-E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c647t-9c5a98ddf08430337c7d15b010f1bf2b3b9dd9895ae4d11d6d2f6ff9995685893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Analysis</topic><topic>Baeyer-Villiger monooxygenases</topic><topic>Biocatalysts</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biosynthesis</topic><topic>Biotechnologically Relevant Enzymes and Proteins</topic><topic>Biotechnology</topic><topic>Camphor</topic><topic>Camphor - metabolism</topic><topic>Catalysis</topic><topic>Coenzymes - metabolism</topic><topic>E coli</topic><topic>Enzymes</topic><topic>Escherichia coli</topic><topic>Escherichia coli - enzymology</topic><topic>Escherichia coli - metabolism</topic><topic>Escherichia coli Proteins - genetics</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>Flavin Mononucleotide - metabolism</topic><topic>Flavin reductase</topic><topic>FMN Reductase - genetics</topic><topic>FMN Reductase - metabolism</topic><topic>Fre</topic><topic>Fusion protein</topic><topic>Gene Expression</topic><topic>Genes</topic><topic>ketones</topic><topic>Life Sciences</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Mixed Function Oxygenases - genetics</topic><topic>Mixed Function Oxygenases - metabolism</topic><topic>Multi-component flavin-dependent monooxygenases</topic><topic>open reading frames</topic><topic>Organic chemistry</topic><topic>Oxidases</topic><topic>Physiological aspects</topic><topic>Polypeptides</topic><topic>Proteins</topic><topic>Pseudomonas putida</topic><topic>Pseudomonas putida - enzymology</topic><topic>Pseudomonas putida - metabolism</topic><topic>Pseudomonas putida NCIMB10007</topic><topic>Recombinant Fusion Proteins - genetics</topic><topic>Recombinant Fusion Proteins - metabolism</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kadow, Maria</creatorcontrib><creatorcontrib>Balke, Kathleen</creatorcontrib><creatorcontrib>Willetts, Andrew</creatorcontrib><creatorcontrib>Bornscheuer, Uwe T</creatorcontrib><creatorcontrib>Bäckvall, J.-E</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>ABI/INFORM Collection (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Science Journals</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>SWEPUB Stockholms universitet full text</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Stockholms universitet</collection><collection>SwePub Articles full text</collection><jtitle>Applied microbiology and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kadow, Maria</au><au>Balke, Kathleen</au><au>Willetts, Andrew</au><au>Bornscheuer, Uwe T</au><au>Bäckvall, J.-E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functional assembly of camphor converting two-component Baeyer–Villiger monooxygenases with a flavin reductase from E. coli</atitle><jtitle>Applied microbiology and biotechnology</jtitle><stitle>Appl Microbiol Biotechnol</stitle><addtitle>Appl Microbiol Biotechnol</addtitle><date>2014-05-01</date><risdate>2014</risdate><volume>98</volume><issue>9</issue><spage>3975</spage><epage>3986</epage><pages>3975-3986</pages><issn>0175-7598</issn><issn>1432-0614</issn><eissn>1432-0614</eissn><abstract>The major limitation in the synthetic application of two-component Baeyer–Villiger monooxygenases was addressed by identifying the 28-kDa flavin-reductase Fre from Escherichia coli as a suitable supplier of reduced FMN for these enzymes. Coexpression of Fre with either 2,5- or 3,6-diketocamphane monooxygenase from Pseudomonas putida NCIMB 10007 significantly enhanced the conversion of camphor and norcamphor serving as representative ketones. With purified enzymes, full conversion was achieved, while only slight amounts of product were formed in the absence of this flavin reductase. Fusion of the genes of Fre and DKCMOs into single open reading frame constructs resulted in unstable proteins exhibiting flavin reducing, but poor oxygenating activity, which led to overall decreased conversion of camphor.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><pmid>24190498</pmid><doi>10.1007/s00253-013-5338-3</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0175-7598 |
ispartof | Applied microbiology and biotechnology, 2014-05, Vol.98 (9), p.3975-3986 |
issn | 0175-7598 1432-0614 1432-0614 |
language | eng |
recordid | cdi_swepub_primary_oai_DiVA_org_su_104410 |
source | ABI/INFORM Global; Springer Link |
subjects | Analysis Baeyer-Villiger monooxygenases Biocatalysts Biochemistry Biomedical and Life Sciences Biosynthesis Biotechnologically Relevant Enzymes and Proteins Biotechnology Camphor Camphor - metabolism Catalysis Coenzymes - metabolism E coli Enzymes Escherichia coli Escherichia coli - enzymology Escherichia coli - metabolism Escherichia coli Proteins - genetics Escherichia coli Proteins - metabolism Flavin Mononucleotide - metabolism Flavin reductase FMN Reductase - genetics FMN Reductase - metabolism Fre Fusion protein Gene Expression Genes ketones Life Sciences Microbial Genetics and Genomics Microbiology Mixed Function Oxygenases - genetics Mixed Function Oxygenases - metabolism Multi-component flavin-dependent monooxygenases open reading frames Organic chemistry Oxidases Physiological aspects Polypeptides Proteins Pseudomonas putida Pseudomonas putida - enzymology Pseudomonas putida - metabolism Pseudomonas putida NCIMB10007 Recombinant Fusion Proteins - genetics Recombinant Fusion Proteins - metabolism Studies |
title | Functional assembly of camphor converting two-component Baeyer–Villiger monooxygenases with a flavin reductase from E. coli |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T01%3A18%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functional%20assembly%20of%20camphor%20converting%20two-component%20Baeyer%E2%80%93Villiger%20monooxygenases%20with%20a%20flavin%20reductase%20from%20E.%20coli&rft.jtitle=Applied%20microbiology%20and%20biotechnology&rft.au=Kadow,%20Maria&rft.date=2014-05-01&rft.volume=98&rft.issue=9&rft.spage=3975&rft.epage=3986&rft.pages=3975-3986&rft.issn=0175-7598&rft.eissn=1432-0614&rft_id=info:doi/10.1007/s00253-013-5338-3&rft_dat=%3Cgale_swepu%3EA370443957%3C/gale_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c647t-9c5a98ddf08430337c7d15b010f1bf2b3b9dd9895ae4d11d6d2f6ff9995685893%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1516043437&rft_id=info:pmid/24190498&rft_galeid=A370443957&rfr_iscdi=true |