Loading…

Functional assembly of camphor converting two-component Baeyer–Villiger monooxygenases with a flavin reductase from E. coli

The major limitation in the synthetic application of two-component Baeyer–Villiger monooxygenases was addressed by identifying the 28-kDa flavin-reductase Fre from Escherichia coli as a suitable supplier of reduced FMN for these enzymes. Coexpression of Fre with either 2,5- or 3,6-diketocamphane mon...

Full description

Saved in:
Bibliographic Details
Published in:Applied microbiology and biotechnology 2014-05, Vol.98 (9), p.3975-3986
Main Authors: Kadow, Maria, Balke, Kathleen, Willetts, Andrew, Bornscheuer, Uwe T, Bäckvall, J.-E
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c647t-9c5a98ddf08430337c7d15b010f1bf2b3b9dd9895ae4d11d6d2f6ff9995685893
cites cdi_FETCH-LOGICAL-c647t-9c5a98ddf08430337c7d15b010f1bf2b3b9dd9895ae4d11d6d2f6ff9995685893
container_end_page 3986
container_issue 9
container_start_page 3975
container_title Applied microbiology and biotechnology
container_volume 98
creator Kadow, Maria
Balke, Kathleen
Willetts, Andrew
Bornscheuer, Uwe T
Bäckvall, J.-E
description The major limitation in the synthetic application of two-component Baeyer–Villiger monooxygenases was addressed by identifying the 28-kDa flavin-reductase Fre from Escherichia coli as a suitable supplier of reduced FMN for these enzymes. Coexpression of Fre with either 2,5- or 3,6-diketocamphane monooxygenase from Pseudomonas putida NCIMB 10007 significantly enhanced the conversion of camphor and norcamphor serving as representative ketones. With purified enzymes, full conversion was achieved, while only slight amounts of product were formed in the absence of this flavin reductase. Fusion of the genes of Fre and DKCMOs into single open reading frame constructs resulted in unstable proteins exhibiting flavin reducing, but poor oxygenating activity, which led to overall decreased conversion of camphor.
doi_str_mv 10.1007/s00253-013-5338-3
format article
fullrecord <record><control><sourceid>gale_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_su_104410</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A370443957</galeid><sourcerecordid>A370443957</sourcerecordid><originalsourceid>FETCH-LOGICAL-c647t-9c5a98ddf08430337c7d15b010f1bf2b3b9dd9895ae4d11d6d2f6ff9995685893</originalsourceid><addsrcrecordid>eNqNkstu1DAUhiMEokPhAdiAJTYgkeH4kouXQy9QqRISpd1aTmKnrhJ7aiedzqIS78Ab8iR4lKEwCCHkhSWf7__lc86fJM8xzDFA8S4AkIymgGmaUVqm9EEyw4ySFHLMHiYzwEWWFhkv95InIVwBYFLm-eNkjzDMgfFyltwdj7YejLOyQzIE1VfdGjmNatkvL51HtbM3yg_GtmhYubR2_dJZZQf0Xqq18t-_frswXWda5VHvrHO361ZZGVRAKzNcIol0J2-MRV41Yz3EAtLe9ehoHp078zR5pGUX1LPtvZ-cHx99OfiYnn76cHKwOE3rnBVDyutM8rJpNJSMAqVFXTQ4qwCDxpUmFa140_CSZ1KxBuMmb4jOteacZ3mZlZzuJ28n37BSy7ESS2966dfCSSMOzcVCON-KMAoMjGGI-OsJX3p3PaowiN6EWnWdtMqNQeCMAC14Qcr_QHFeEJrzjeurP9ArN_o4-IkCRhktflGt7JQwVrvBy3pjKha0iP-jPNtQ879Q8TSqN3FnSpv4viN4syOIzKBuh1aOIYiTs8-7LJ7Y2rsQvNL388IgNsETU_BEDJ7YBE_QqHmxbW6setXcK34mLQJku4JYsjEvv3X_D9eXk0hLJ2TrTRDnZwQwA4C4WcLpD_YL61c</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1516043437</pqid></control><display><type>article</type><title>Functional assembly of camphor converting two-component Baeyer–Villiger monooxygenases with a flavin reductase from E. coli</title><source>ABI/INFORM Global</source><source>Springer Link</source><creator>Kadow, Maria ; Balke, Kathleen ; Willetts, Andrew ; Bornscheuer, Uwe T ; Bäckvall, J.-E</creator><creatorcontrib>Kadow, Maria ; Balke, Kathleen ; Willetts, Andrew ; Bornscheuer, Uwe T ; Bäckvall, J.-E</creatorcontrib><description>The major limitation in the synthetic application of two-component Baeyer–Villiger monooxygenases was addressed by identifying the 28-kDa flavin-reductase Fre from Escherichia coli as a suitable supplier of reduced FMN for these enzymes. Coexpression of Fre with either 2,5- or 3,6-diketocamphane monooxygenase from Pseudomonas putida NCIMB 10007 significantly enhanced the conversion of camphor and norcamphor serving as representative ketones. With purified enzymes, full conversion was achieved, while only slight amounts of product were formed in the absence of this flavin reductase. Fusion of the genes of Fre and DKCMOs into single open reading frame constructs resulted in unstable proteins exhibiting flavin reducing, but poor oxygenating activity, which led to overall decreased conversion of camphor.</description><identifier>ISSN: 0175-7598</identifier><identifier>ISSN: 1432-0614</identifier><identifier>EISSN: 1432-0614</identifier><identifier>DOI: 10.1007/s00253-013-5338-3</identifier><identifier>PMID: 24190498</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Analysis ; Baeyer-Villiger monooxygenases ; Biocatalysts ; Biochemistry ; Biomedical and Life Sciences ; Biosynthesis ; Biotechnologically Relevant Enzymes and Proteins ; Biotechnology ; Camphor ; Camphor - metabolism ; Catalysis ; Coenzymes - metabolism ; E coli ; Enzymes ; Escherichia coli ; Escherichia coli - enzymology ; Escherichia coli - metabolism ; Escherichia coli Proteins - genetics ; Escherichia coli Proteins - metabolism ; Flavin Mononucleotide - metabolism ; Flavin reductase ; FMN Reductase - genetics ; FMN Reductase - metabolism ; Fre ; Fusion protein ; Gene Expression ; Genes ; ketones ; Life Sciences ; Microbial Genetics and Genomics ; Microbiology ; Mixed Function Oxygenases - genetics ; Mixed Function Oxygenases - metabolism ; Multi-component flavin-dependent monooxygenases ; open reading frames ; Organic chemistry ; Oxidases ; Physiological aspects ; Polypeptides ; Proteins ; Pseudomonas putida ; Pseudomonas putida - enzymology ; Pseudomonas putida - metabolism ; Pseudomonas putida NCIMB10007 ; Recombinant Fusion Proteins - genetics ; Recombinant Fusion Proteins - metabolism ; Studies</subject><ispartof>Applied microbiology and biotechnology, 2014-05, Vol.98 (9), p.3975-3986</ispartof><rights>Springer-Verlag Berlin Heidelberg 2013</rights><rights>COPYRIGHT 2014 Springer</rights><rights>Springer-Verlag Berlin Heidelberg 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c647t-9c5a98ddf08430337c7d15b010f1bf2b3b9dd9895ae4d11d6d2f6ff9995685893</citedby><cites>FETCH-LOGICAL-c647t-9c5a98ddf08430337c7d15b010f1bf2b3b9dd9895ae4d11d6d2f6ff9995685893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1516043437/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1516043437?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>230,314,780,784,885,11688,27924,27925,36060,36061,44363,74895</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24190498$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-104410$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Kadow, Maria</creatorcontrib><creatorcontrib>Balke, Kathleen</creatorcontrib><creatorcontrib>Willetts, Andrew</creatorcontrib><creatorcontrib>Bornscheuer, Uwe T</creatorcontrib><creatorcontrib>Bäckvall, J.-E</creatorcontrib><title>Functional assembly of camphor converting two-component Baeyer–Villiger monooxygenases with a flavin reductase from E. coli</title><title>Applied microbiology and biotechnology</title><addtitle>Appl Microbiol Biotechnol</addtitle><addtitle>Appl Microbiol Biotechnol</addtitle><description>The major limitation in the synthetic application of two-component Baeyer–Villiger monooxygenases was addressed by identifying the 28-kDa flavin-reductase Fre from Escherichia coli as a suitable supplier of reduced FMN for these enzymes. Coexpression of Fre with either 2,5- or 3,6-diketocamphane monooxygenase from Pseudomonas putida NCIMB 10007 significantly enhanced the conversion of camphor and norcamphor serving as representative ketones. With purified enzymes, full conversion was achieved, while only slight amounts of product were formed in the absence of this flavin reductase. Fusion of the genes of Fre and DKCMOs into single open reading frame constructs resulted in unstable proteins exhibiting flavin reducing, but poor oxygenating activity, which led to overall decreased conversion of camphor.</description><subject>Analysis</subject><subject>Baeyer-Villiger monooxygenases</subject><subject>Biocatalysts</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biosynthesis</subject><subject>Biotechnologically Relevant Enzymes and Proteins</subject><subject>Biotechnology</subject><subject>Camphor</subject><subject>Camphor - metabolism</subject><subject>Catalysis</subject><subject>Coenzymes - metabolism</subject><subject>E coli</subject><subject>Enzymes</subject><subject>Escherichia coli</subject><subject>Escherichia coli - enzymology</subject><subject>Escherichia coli - metabolism</subject><subject>Escherichia coli Proteins - genetics</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>Flavin Mononucleotide - metabolism</subject><subject>Flavin reductase</subject><subject>FMN Reductase - genetics</subject><subject>FMN Reductase - metabolism</subject><subject>Fre</subject><subject>Fusion protein</subject><subject>Gene Expression</subject><subject>Genes</subject><subject>ketones</subject><subject>Life Sciences</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Mixed Function Oxygenases - genetics</subject><subject>Mixed Function Oxygenases - metabolism</subject><subject>Multi-component flavin-dependent monooxygenases</subject><subject>open reading frames</subject><subject>Organic chemistry</subject><subject>Oxidases</subject><subject>Physiological aspects</subject><subject>Polypeptides</subject><subject>Proteins</subject><subject>Pseudomonas putida</subject><subject>Pseudomonas putida - enzymology</subject><subject>Pseudomonas putida - metabolism</subject><subject>Pseudomonas putida NCIMB10007</subject><subject>Recombinant Fusion Proteins - genetics</subject><subject>Recombinant Fusion Proteins - metabolism</subject><subject>Studies</subject><issn>0175-7598</issn><issn>1432-0614</issn><issn>1432-0614</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNqNkstu1DAUhiMEokPhAdiAJTYgkeH4kouXQy9QqRISpd1aTmKnrhJ7aiedzqIS78Ab8iR4lKEwCCHkhSWf7__lc86fJM8xzDFA8S4AkIymgGmaUVqm9EEyw4ySFHLMHiYzwEWWFhkv95InIVwBYFLm-eNkjzDMgfFyltwdj7YejLOyQzIE1VfdGjmNatkvL51HtbM3yg_GtmhYubR2_dJZZQf0Xqq18t-_frswXWda5VHvrHO361ZZGVRAKzNcIol0J2-MRV41Yz3EAtLe9ehoHp078zR5pGUX1LPtvZ-cHx99OfiYnn76cHKwOE3rnBVDyutM8rJpNJSMAqVFXTQ4qwCDxpUmFa140_CSZ1KxBuMmb4jOteacZ3mZlZzuJ28n37BSy7ESS2966dfCSSMOzcVCON-KMAoMjGGI-OsJX3p3PaowiN6EWnWdtMqNQeCMAC14Qcr_QHFeEJrzjeurP9ArN_o4-IkCRhktflGt7JQwVrvBy3pjKha0iP-jPNtQ879Q8TSqN3FnSpv4viN4syOIzKBuh1aOIYiTs8-7LJ7Y2rsQvNL388IgNsETU_BEDJ7YBE_QqHmxbW6setXcK34mLQJku4JYsjEvv3X_D9eXk0hLJ2TrTRDnZwQwA4C4WcLpD_YL61c</recordid><startdate>20140501</startdate><enddate>20140501</enddate><creator>Kadow, Maria</creator><creator>Balke, Kathleen</creator><creator>Willetts, Andrew</creator><creator>Bornscheuer, Uwe T</creator><creator>Bäckvall, J.-E</creator><general>Springer-Verlag</general><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>7QO</scope><scope>ABAVF</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>DG7</scope><scope>ZZAVC</scope></search><sort><creationdate>20140501</creationdate><title>Functional assembly of camphor converting two-component Baeyer–Villiger monooxygenases with a flavin reductase from E. coli</title><author>Kadow, Maria ; Balke, Kathleen ; Willetts, Andrew ; Bornscheuer, Uwe T ; Bäckvall, J.-E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c647t-9c5a98ddf08430337c7d15b010f1bf2b3b9dd9895ae4d11d6d2f6ff9995685893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Analysis</topic><topic>Baeyer-Villiger monooxygenases</topic><topic>Biocatalysts</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biosynthesis</topic><topic>Biotechnologically Relevant Enzymes and Proteins</topic><topic>Biotechnology</topic><topic>Camphor</topic><topic>Camphor - metabolism</topic><topic>Catalysis</topic><topic>Coenzymes - metabolism</topic><topic>E coli</topic><topic>Enzymes</topic><topic>Escherichia coli</topic><topic>Escherichia coli - enzymology</topic><topic>Escherichia coli - metabolism</topic><topic>Escherichia coli Proteins - genetics</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>Flavin Mononucleotide - metabolism</topic><topic>Flavin reductase</topic><topic>FMN Reductase - genetics</topic><topic>FMN Reductase - metabolism</topic><topic>Fre</topic><topic>Fusion protein</topic><topic>Gene Expression</topic><topic>Genes</topic><topic>ketones</topic><topic>Life Sciences</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Mixed Function Oxygenases - genetics</topic><topic>Mixed Function Oxygenases - metabolism</topic><topic>Multi-component flavin-dependent monooxygenases</topic><topic>open reading frames</topic><topic>Organic chemistry</topic><topic>Oxidases</topic><topic>Physiological aspects</topic><topic>Polypeptides</topic><topic>Proteins</topic><topic>Pseudomonas putida</topic><topic>Pseudomonas putida - enzymology</topic><topic>Pseudomonas putida - metabolism</topic><topic>Pseudomonas putida NCIMB10007</topic><topic>Recombinant Fusion Proteins - genetics</topic><topic>Recombinant Fusion Proteins - metabolism</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kadow, Maria</creatorcontrib><creatorcontrib>Balke, Kathleen</creatorcontrib><creatorcontrib>Willetts, Andrew</creatorcontrib><creatorcontrib>Bornscheuer, Uwe T</creatorcontrib><creatorcontrib>Bäckvall, J.-E</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>ABI/INFORM Collection (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Science Journals</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>SWEPUB Stockholms universitet full text</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Stockholms universitet</collection><collection>SwePub Articles full text</collection><jtitle>Applied microbiology and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kadow, Maria</au><au>Balke, Kathleen</au><au>Willetts, Andrew</au><au>Bornscheuer, Uwe T</au><au>Bäckvall, J.-E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functional assembly of camphor converting two-component Baeyer–Villiger monooxygenases with a flavin reductase from E. coli</atitle><jtitle>Applied microbiology and biotechnology</jtitle><stitle>Appl Microbiol Biotechnol</stitle><addtitle>Appl Microbiol Biotechnol</addtitle><date>2014-05-01</date><risdate>2014</risdate><volume>98</volume><issue>9</issue><spage>3975</spage><epage>3986</epage><pages>3975-3986</pages><issn>0175-7598</issn><issn>1432-0614</issn><eissn>1432-0614</eissn><abstract>The major limitation in the synthetic application of two-component Baeyer–Villiger monooxygenases was addressed by identifying the 28-kDa flavin-reductase Fre from Escherichia coli as a suitable supplier of reduced FMN for these enzymes. Coexpression of Fre with either 2,5- or 3,6-diketocamphane monooxygenase from Pseudomonas putida NCIMB 10007 significantly enhanced the conversion of camphor and norcamphor serving as representative ketones. With purified enzymes, full conversion was achieved, while only slight amounts of product were formed in the absence of this flavin reductase. Fusion of the genes of Fre and DKCMOs into single open reading frame constructs resulted in unstable proteins exhibiting flavin reducing, but poor oxygenating activity, which led to overall decreased conversion of camphor.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><pmid>24190498</pmid><doi>10.1007/s00253-013-5338-3</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0175-7598
ispartof Applied microbiology and biotechnology, 2014-05, Vol.98 (9), p.3975-3986
issn 0175-7598
1432-0614
1432-0614
language eng
recordid cdi_swepub_primary_oai_DiVA_org_su_104410
source ABI/INFORM Global; Springer Link
subjects Analysis
Baeyer-Villiger monooxygenases
Biocatalysts
Biochemistry
Biomedical and Life Sciences
Biosynthesis
Biotechnologically Relevant Enzymes and Proteins
Biotechnology
Camphor
Camphor - metabolism
Catalysis
Coenzymes - metabolism
E coli
Enzymes
Escherichia coli
Escherichia coli - enzymology
Escherichia coli - metabolism
Escherichia coli Proteins - genetics
Escherichia coli Proteins - metabolism
Flavin Mononucleotide - metabolism
Flavin reductase
FMN Reductase - genetics
FMN Reductase - metabolism
Fre
Fusion protein
Gene Expression
Genes
ketones
Life Sciences
Microbial Genetics and Genomics
Microbiology
Mixed Function Oxygenases - genetics
Mixed Function Oxygenases - metabolism
Multi-component flavin-dependent monooxygenases
open reading frames
Organic chemistry
Oxidases
Physiological aspects
Polypeptides
Proteins
Pseudomonas putida
Pseudomonas putida - enzymology
Pseudomonas putida - metabolism
Pseudomonas putida NCIMB10007
Recombinant Fusion Proteins - genetics
Recombinant Fusion Proteins - metabolism
Studies
title Functional assembly of camphor converting two-component Baeyer–Villiger monooxygenases with a flavin reductase from E. coli
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T01%3A18%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functional%20assembly%20of%20camphor%20converting%20two-component%20Baeyer%E2%80%93Villiger%20monooxygenases%20with%20a%20flavin%20reductase%20from%20E.%20coli&rft.jtitle=Applied%20microbiology%20and%20biotechnology&rft.au=Kadow,%20Maria&rft.date=2014-05-01&rft.volume=98&rft.issue=9&rft.spage=3975&rft.epage=3986&rft.pages=3975-3986&rft.issn=0175-7598&rft.eissn=1432-0614&rft_id=info:doi/10.1007/s00253-013-5338-3&rft_dat=%3Cgale_swepu%3EA370443957%3C/gale_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c647t-9c5a98ddf08430337c7d15b010f1bf2b3b9dd9895ae4d11d6d2f6ff9995685893%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1516043437&rft_id=info:pmid/24190498&rft_galeid=A370443957&rfr_iscdi=true