Loading…

Thermal stability of titanate nanorods and titania nanowires formed from titanate nanotubes by heating

The structure of titanate nanowires was studied by a combination of powder X-ray diffraction (XRD) and 3D precession electron diffraction. Titania nanowires and titanate nanorods were prepared by heating of titanate nanotubes. The structure of final product depended on heating conditions. Titanium n...

Full description

Saved in:
Bibliographic Details
Published in:Materials characterization 2014-12, Vol.98, p.26-36
Main Authors: Brunatova, Tereza, Matej, Zdenek, Oleynikov, Peter, Vesely, Josef, Danis, Stanislav, Popelkova, Daniela, Kuzel, Radomir
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c437t-9e080cf2959a6a745bf1a6f40365eb40deff44d5f399eb2e3fedaf4067b9317d3
cites cdi_FETCH-LOGICAL-c437t-9e080cf2959a6a745bf1a6f40365eb40deff44d5f399eb2e3fedaf4067b9317d3
container_end_page 36
container_issue
container_start_page 26
container_title Materials characterization
container_volume 98
creator Brunatova, Tereza
Matej, Zdenek
Oleynikov, Peter
Vesely, Josef
Danis, Stanislav
Popelkova, Daniela
Kuzel, Radomir
description The structure of titanate nanowires was studied by a combination of powder X-ray diffraction (XRD) and 3D precession electron diffraction. Titania nanowires and titanate nanorods were prepared by heating of titanate nanotubes. The structure of final product depended on heating conditions. Titanium nanotubes heated in air at a temperature of 850°C decomposed into three phases — Na2Ti6O13 (nanorods) and two phases of TiO2 — anatase and rutile. At higher temperatures the anatase form of TiO2 transforms into rutile and the nanorods change into rutile nanoparticles. By contrast, in the vacuum only anatase phases of TiO2 were obtained by heating at 900°C. The anatase transformation into rutile began only after a longer time of heating at 1000°C. For the description of anisotropic XRD line broadening in the total powder pattern fitting by the program MSTRUCT a model of nanorods with elliptical base was included in the software. The model parameters — rod length, axis size of the elliptical base, the ellipse flattening parameter and twist of the base could be refined. Variation of particle shapes with temperature was found. •Titanate nanotubes changed to particles of TiO2 and nanorods of Na2Ti6O13 at 850°C.•With heating time and temperature nanorods transformed to rutile nanoparticles.•X-ray diffraction powder pattern fitting indicated an elliptical shape of nanorod base.•No transition of titanate nanotubes to Na2Ti6O13 was found after heating in vacuum.•Heating of titanate nanotubes in vacuum leads to appearance of anatase nanowires.
doi_str_mv 10.1016/j.matchar.2014.10.008
format article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_su_113710</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1044580314003003</els_id><sourcerecordid>1660074846</sourcerecordid><originalsourceid>FETCH-LOGICAL-c437t-9e080cf2959a6a745bf1a6f40365eb40deff44d5f399eb2e3fedaf4067b9317d3</originalsourceid><addsrcrecordid>eNqFkUtr3DAUhU1poGnan1AwlEIX9fTKlh9alZA-IZBNkq24lq4yGmxpKskJ8--rqYdAV11JnPtdnYNOUbxjsGHAus-7zYxJbTFsamA8axuA4UVxzoa-qTgbxMt8B86rdoDmVfE6xh0AdAPrzwtzu6Uw41TGhKOdbDqU3pTJJnSYqHTofPA6luj0qlr8Kz7ZQLE0PsykSxP8_O9OWsY8Hg_lljBZ9_CmODM4RXp7Oi-Ku-_fbq9-Vtc3P35dXV5Xijd9qgTBAMrUohXYYc_b0TDsDIema2nkoMkYznVrGiForKkxpDGPu34UDet1c1F8Wt-NT7RfRrkPdsZwkB6t_GrvL6UPDzIukrGmZ5Dx9yvuY7IyKptIbZV3jlSSdZ19WyEy9XGl9sH_XigmOduoaJrQkV-iZF0H0POBdxltV1QFH2Mg85yAgTyWJXfyVJY8lnWUc1l578PJAqPCyQR0ysbn5VpAy3OezH1ZOcqf-GgpHEOTU6RzHzmz9vY_Tn8AWQGusA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1660074846</pqid></control><display><type>article</type><title>Thermal stability of titanate nanorods and titania nanowires formed from titanate nanotubes by heating</title><source>ScienceDirect Freedom Collection</source><creator>Brunatova, Tereza ; Matej, Zdenek ; Oleynikov, Peter ; Vesely, Josef ; Danis, Stanislav ; Popelkova, Daniela ; Kuzel, Radomir</creator><creatorcontrib>Brunatova, Tereza ; Matej, Zdenek ; Oleynikov, Peter ; Vesely, Josef ; Danis, Stanislav ; Popelkova, Daniela ; Kuzel, Radomir</creatorcontrib><description>The structure of titanate nanowires was studied by a combination of powder X-ray diffraction (XRD) and 3D precession electron diffraction. Titania nanowires and titanate nanorods were prepared by heating of titanate nanotubes. The structure of final product depended on heating conditions. Titanium nanotubes heated in air at a temperature of 850°C decomposed into three phases — Na2Ti6O13 (nanorods) and two phases of TiO2 — anatase and rutile. At higher temperatures the anatase form of TiO2 transforms into rutile and the nanorods change into rutile nanoparticles. By contrast, in the vacuum only anatase phases of TiO2 were obtained by heating at 900°C. The anatase transformation into rutile began only after a longer time of heating at 1000°C. For the description of anisotropic XRD line broadening in the total powder pattern fitting by the program MSTRUCT a model of nanorods with elliptical base was included in the software. The model parameters — rod length, axis size of the elliptical base, the ellipse flattening parameter and twist of the base could be refined. Variation of particle shapes with temperature was found. •Titanate nanotubes changed to particles of TiO2 and nanorods of Na2Ti6O13 at 850°C.•With heating time and temperature nanorods transformed to rutile nanoparticles.•X-ray diffraction powder pattern fitting indicated an elliptical shape of nanorod base.•No transition of titanate nanotubes to Na2Ti6O13 was found after heating in vacuum.•Heating of titanate nanotubes in vacuum leads to appearance of anatase nanowires.</description><identifier>ISSN: 1044-5803</identifier><identifier>ISSN: 1873-4189</identifier><identifier>EISSN: 1873-4189</identifier><identifier>DOI: 10.1016/j.matchar.2014.10.008</identifier><language>eng</language><publisher>New York, NY: Elsevier Inc</publisher><subject>Anatase ; ANISOTROPY ; Cross-disciplinary physics: materials science; rheology ; ELECTRON DIFFRACTION ; Exact sciences and technology ; HEATING ; LINE BROADENING ; MATERIALS SCIENCE ; Mathematical models ; NANOPARTICLES ; Nanorods ; NANOSCIENCE AND NANOTECHNOLOGY ; NANOTUBES ; NANOWIRES ; Phase diagrams and microstructures developed by solidification and solid-solid phase transformations ; PHASE STABILITY ; PHASE TRANSFORMATIONS ; Physics ; POWDERS ; PRECESSION ; Precession electron diffraction ; RUTILE ; Solidification ; Titanate nanorods ; TITANATES ; Titania nanowires ; TITANIUM ; Titanium dioxide ; TITANIUM OXIDES ; X-RAY DIFFRACTION</subject><ispartof>Materials characterization, 2014-12, Vol.98, p.26-36</ispartof><rights>2014 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c437t-9e080cf2959a6a745bf1a6f40365eb40deff44d5f399eb2e3fedaf4067b9317d3</citedby><cites>FETCH-LOGICAL-c437t-9e080cf2959a6a745bf1a6f40365eb40deff44d5f399eb2e3fedaf4067b9317d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27922,27923</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=29054224$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/22403599$$D View this record in Osti.gov$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-113710$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Brunatova, Tereza</creatorcontrib><creatorcontrib>Matej, Zdenek</creatorcontrib><creatorcontrib>Oleynikov, Peter</creatorcontrib><creatorcontrib>Vesely, Josef</creatorcontrib><creatorcontrib>Danis, Stanislav</creatorcontrib><creatorcontrib>Popelkova, Daniela</creatorcontrib><creatorcontrib>Kuzel, Radomir</creatorcontrib><title>Thermal stability of titanate nanorods and titania nanowires formed from titanate nanotubes by heating</title><title>Materials characterization</title><description>The structure of titanate nanowires was studied by a combination of powder X-ray diffraction (XRD) and 3D precession electron diffraction. Titania nanowires and titanate nanorods were prepared by heating of titanate nanotubes. The structure of final product depended on heating conditions. Titanium nanotubes heated in air at a temperature of 850°C decomposed into three phases — Na2Ti6O13 (nanorods) and two phases of TiO2 — anatase and rutile. At higher temperatures the anatase form of TiO2 transforms into rutile and the nanorods change into rutile nanoparticles. By contrast, in the vacuum only anatase phases of TiO2 were obtained by heating at 900°C. The anatase transformation into rutile began only after a longer time of heating at 1000°C. For the description of anisotropic XRD line broadening in the total powder pattern fitting by the program MSTRUCT a model of nanorods with elliptical base was included in the software. The model parameters — rod length, axis size of the elliptical base, the ellipse flattening parameter and twist of the base could be refined. Variation of particle shapes with temperature was found. •Titanate nanotubes changed to particles of TiO2 and nanorods of Na2Ti6O13 at 850°C.•With heating time and temperature nanorods transformed to rutile nanoparticles.•X-ray diffraction powder pattern fitting indicated an elliptical shape of nanorod base.•No transition of titanate nanotubes to Na2Ti6O13 was found after heating in vacuum.•Heating of titanate nanotubes in vacuum leads to appearance of anatase nanowires.</description><subject>Anatase</subject><subject>ANISOTROPY</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>ELECTRON DIFFRACTION</subject><subject>Exact sciences and technology</subject><subject>HEATING</subject><subject>LINE BROADENING</subject><subject>MATERIALS SCIENCE</subject><subject>Mathematical models</subject><subject>NANOPARTICLES</subject><subject>Nanorods</subject><subject>NANOSCIENCE AND NANOTECHNOLOGY</subject><subject>NANOTUBES</subject><subject>NANOWIRES</subject><subject>Phase diagrams and microstructures developed by solidification and solid-solid phase transformations</subject><subject>PHASE STABILITY</subject><subject>PHASE TRANSFORMATIONS</subject><subject>Physics</subject><subject>POWDERS</subject><subject>PRECESSION</subject><subject>Precession electron diffraction</subject><subject>RUTILE</subject><subject>Solidification</subject><subject>Titanate nanorods</subject><subject>TITANATES</subject><subject>Titania nanowires</subject><subject>TITANIUM</subject><subject>Titanium dioxide</subject><subject>TITANIUM OXIDES</subject><subject>X-RAY DIFFRACTION</subject><issn>1044-5803</issn><issn>1873-4189</issn><issn>1873-4189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkUtr3DAUhU1poGnan1AwlEIX9fTKlh9alZA-IZBNkq24lq4yGmxpKskJ8--rqYdAV11JnPtdnYNOUbxjsGHAus-7zYxJbTFsamA8axuA4UVxzoa-qTgbxMt8B86rdoDmVfE6xh0AdAPrzwtzu6Uw41TGhKOdbDqU3pTJJnSYqHTofPA6luj0qlr8Kz7ZQLE0PsykSxP8_O9OWsY8Hg_lljBZ9_CmODM4RXp7Oi-Ku-_fbq9-Vtc3P35dXV5Xijd9qgTBAMrUohXYYc_b0TDsDIema2nkoMkYznVrGiForKkxpDGPu34UDet1c1F8Wt-NT7RfRrkPdsZwkB6t_GrvL6UPDzIukrGmZ5Dx9yvuY7IyKptIbZV3jlSSdZ19WyEy9XGl9sH_XigmOduoaJrQkV-iZF0H0POBdxltV1QFH2Mg85yAgTyWJXfyVJY8lnWUc1l578PJAqPCyQR0ysbn5VpAy3OezH1ZOcqf-GgpHEOTU6RzHzmz9vY_Tn8AWQGusA</recordid><startdate>20141201</startdate><enddate>20141201</enddate><creator>Brunatova, Tereza</creator><creator>Matej, Zdenek</creator><creator>Oleynikov, Peter</creator><creator>Vesely, Josef</creator><creator>Danis, Stanislav</creator><creator>Popelkova, Daniela</creator><creator>Kuzel, Radomir</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>OTOTI</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>DG7</scope></search><sort><creationdate>20141201</creationdate><title>Thermal stability of titanate nanorods and titania nanowires formed from titanate nanotubes by heating</title><author>Brunatova, Tereza ; Matej, Zdenek ; Oleynikov, Peter ; Vesely, Josef ; Danis, Stanislav ; Popelkova, Daniela ; Kuzel, Radomir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c437t-9e080cf2959a6a745bf1a6f40365eb40deff44d5f399eb2e3fedaf4067b9317d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Anatase</topic><topic>ANISOTROPY</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>ELECTRON DIFFRACTION</topic><topic>Exact sciences and technology</topic><topic>HEATING</topic><topic>LINE BROADENING</topic><topic>MATERIALS SCIENCE</topic><topic>Mathematical models</topic><topic>NANOPARTICLES</topic><topic>Nanorods</topic><topic>NANOSCIENCE AND NANOTECHNOLOGY</topic><topic>NANOTUBES</topic><topic>NANOWIRES</topic><topic>Phase diagrams and microstructures developed by solidification and solid-solid phase transformations</topic><topic>PHASE STABILITY</topic><topic>PHASE TRANSFORMATIONS</topic><topic>Physics</topic><topic>POWDERS</topic><topic>PRECESSION</topic><topic>Precession electron diffraction</topic><topic>RUTILE</topic><topic>Solidification</topic><topic>Titanate nanorods</topic><topic>TITANATES</topic><topic>Titania nanowires</topic><topic>TITANIUM</topic><topic>Titanium dioxide</topic><topic>TITANIUM OXIDES</topic><topic>X-RAY DIFFRACTION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brunatova, Tereza</creatorcontrib><creatorcontrib>Matej, Zdenek</creatorcontrib><creatorcontrib>Oleynikov, Peter</creatorcontrib><creatorcontrib>Vesely, Josef</creatorcontrib><creatorcontrib>Danis, Stanislav</creatorcontrib><creatorcontrib>Popelkova, Daniela</creatorcontrib><creatorcontrib>Kuzel, Radomir</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Stockholms universitet</collection><jtitle>Materials characterization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brunatova, Tereza</au><au>Matej, Zdenek</au><au>Oleynikov, Peter</au><au>Vesely, Josef</au><au>Danis, Stanislav</au><au>Popelkova, Daniela</au><au>Kuzel, Radomir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal stability of titanate nanorods and titania nanowires formed from titanate nanotubes by heating</atitle><jtitle>Materials characterization</jtitle><date>2014-12-01</date><risdate>2014</risdate><volume>98</volume><spage>26</spage><epage>36</epage><pages>26-36</pages><issn>1044-5803</issn><issn>1873-4189</issn><eissn>1873-4189</eissn><abstract>The structure of titanate nanowires was studied by a combination of powder X-ray diffraction (XRD) and 3D precession electron diffraction. Titania nanowires and titanate nanorods were prepared by heating of titanate nanotubes. The structure of final product depended on heating conditions. Titanium nanotubes heated in air at a temperature of 850°C decomposed into three phases — Na2Ti6O13 (nanorods) and two phases of TiO2 — anatase and rutile. At higher temperatures the anatase form of TiO2 transforms into rutile and the nanorods change into rutile nanoparticles. By contrast, in the vacuum only anatase phases of TiO2 were obtained by heating at 900°C. The anatase transformation into rutile began only after a longer time of heating at 1000°C. For the description of anisotropic XRD line broadening in the total powder pattern fitting by the program MSTRUCT a model of nanorods with elliptical base was included in the software. The model parameters — rod length, axis size of the elliptical base, the ellipse flattening parameter and twist of the base could be refined. Variation of particle shapes with temperature was found. •Titanate nanotubes changed to particles of TiO2 and nanorods of Na2Ti6O13 at 850°C.•With heating time and temperature nanorods transformed to rutile nanoparticles.•X-ray diffraction powder pattern fitting indicated an elliptical shape of nanorod base.•No transition of titanate nanotubes to Na2Ti6O13 was found after heating in vacuum.•Heating of titanate nanotubes in vacuum leads to appearance of anatase nanowires.</abstract><cop>New York, NY</cop><pub>Elsevier Inc</pub><doi>10.1016/j.matchar.2014.10.008</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1044-5803
ispartof Materials characterization, 2014-12, Vol.98, p.26-36
issn 1044-5803
1873-4189
1873-4189
language eng
recordid cdi_swepub_primary_oai_DiVA_org_su_113710
source ScienceDirect Freedom Collection
subjects Anatase
ANISOTROPY
Cross-disciplinary physics: materials science
rheology
ELECTRON DIFFRACTION
Exact sciences and technology
HEATING
LINE BROADENING
MATERIALS SCIENCE
Mathematical models
NANOPARTICLES
Nanorods
NANOSCIENCE AND NANOTECHNOLOGY
NANOTUBES
NANOWIRES
Phase diagrams and microstructures developed by solidification and solid-solid phase transformations
PHASE STABILITY
PHASE TRANSFORMATIONS
Physics
POWDERS
PRECESSION
Precession electron diffraction
RUTILE
Solidification
Titanate nanorods
TITANATES
Titania nanowires
TITANIUM
Titanium dioxide
TITANIUM OXIDES
X-RAY DIFFRACTION
title Thermal stability of titanate nanorods and titania nanowires formed from titanate nanotubes by heating
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T18%3A14%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20stability%20of%20titanate%20nanorods%20and%20titania%20nanowires%20formed%20from%20titanate%20nanotubes%20by%20heating&rft.jtitle=Materials%20characterization&rft.au=Brunatova,%20Tereza&rft.date=2014-12-01&rft.volume=98&rft.spage=26&rft.epage=36&rft.pages=26-36&rft.issn=1044-5803&rft.eissn=1873-4189&rft_id=info:doi/10.1016/j.matchar.2014.10.008&rft_dat=%3Cproquest_swepu%3E1660074846%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c437t-9e080cf2959a6a745bf1a6f40365eb40deff44d5f399eb2e3fedaf4067b9317d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1660074846&rft_id=info:pmid/&rfr_iscdi=true