Loading…

Landau quantization, Rashba spin-orbit coupling and Zeeman splitting of two-dimensional heavy-hole gases

The origin of the g‐factor of two‐dimensional (2D) electrons and holes moving in the periodic crystal lattice potential with perpendicular magnetic and electric fields is discussed. The Pauli equation describing the Landau quantization accompanied by the Rashba spin–orbit coupling (RSOC) and Zeeman...

Full description

Saved in:
Bibliographic Details
Published in:Physica Status Solidi. B: Basic Solid State Physics 2015-04, Vol.252 (4), p.730-742
Main Authors: Moskalenko, S. A., Podlesny, I. V., Dumanov, E. V., Liberman, M. A., Novikov, B. V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5336-3982ddcf83e48b1f3d87a1308a6464aff48fbe1fec2199528f681c2e5d27fe3a3
cites cdi_FETCH-LOGICAL-c5336-3982ddcf83e48b1f3d87a1308a6464aff48fbe1fec2199528f681c2e5d27fe3a3
container_end_page 742
container_issue 4
container_start_page 730
container_title Physica Status Solidi. B: Basic Solid State Physics
container_volume 252
creator Moskalenko, S. A.
Podlesny, I. V.
Dumanov, E. V.
Liberman, M. A.
Novikov, B. V.
description The origin of the g‐factor of two‐dimensional (2D) electrons and holes moving in the periodic crystal lattice potential with perpendicular magnetic and electric fields is discussed. The Pauli equation describing the Landau quantization accompanied by the Rashba spin–orbit coupling (RSOC) and Zeeman splitting (ZS) for 2D heavy holes with nonparabolic dispersion law is solved exactly. The solutions have the form of pairs of the Landau quantization levels due to the spinor‐type wave functions. The energy levels depend on the amplitudes of the magnetic and electric fields, on the g‐factor gh, and on the parameter of nonparabolicity C. The dependences of two energy levels in any pair on the Zeeman parameter Zh=ghmh/4m0, where mh is the hole effective mass, are nonmonotonous and without intersections. The smallest distance between them at C=0 takes place at the value Zh=n/2, where n is the order of the chirality terms determined by the RSOC and is the same for any quantum number of the Landau quantization.
doi_str_mv 10.1002/pssb.201451296
format article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_su_117507</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1685773119</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5336-3982ddcf83e48b1f3d87a1308a6464aff48fbe1fec2199528f681c2e5d27fe3a3</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi0EEkvplbOPHJrFYydxciyFfoilIFpA2os1ScYb02ycxkmX5deT1Var3nqyNH6eVzN6GXsHYg5CyA9dCMVcCogTkHn6gs0gkRCpPIGXbCaUFhHkWr5mb0L4I4TQoGDG6gW2FY78fsR2cP9wcL494T8w1AXy0Lk28n3hBl76sWtcu-ITzpdEa2yn78YNw27oLR82PqrcmtowJWDDa8KHbVT7hvgKA4W37JXFJtDx43vEfp5_vj27jBbfLq7OThdRmSiVTutmsqpKmymKswKsqjKNoESGaZzGaG2c2YLAUikhzxOZ2TSDUlJSSW1JoTpiJ_vcsKFuLEzXuzX2W-PRmU_u16nx_cqE0QDoROgJj57H74baQJoqtePf7_mu9_cjhcGsXSipabAlP4YJyxKtFUA-ofM9WvY-hJ7sIRyE2TVmdo2ZQ2OTkO-FjWto-wxtvt_cfHzqPt7hwkB_Dy72dybVSifm9_WFSb9e5svll3OTq_9FeawH</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1685773119</pqid></control><display><type>article</type><title>Landau quantization, Rashba spin-orbit coupling and Zeeman splitting of two-dimensional heavy-hole gases</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Moskalenko, S. A. ; Podlesny, I. V. ; Dumanov, E. V. ; Liberman, M. A. ; Novikov, B. V.</creator><creatorcontrib>Moskalenko, S. A. ; Podlesny, I. V. ; Dumanov, E. V. ; Liberman, M. A. ; Novikov, B. V.</creatorcontrib><description>The origin of the g‐factor of two‐dimensional (2D) electrons and holes moving in the periodic crystal lattice potential with perpendicular magnetic and electric fields is discussed. The Pauli equation describing the Landau quantization accompanied by the Rashba spin–orbit coupling (RSOC) and Zeeman splitting (ZS) for 2D heavy holes with nonparabolic dispersion law is solved exactly. The solutions have the form of pairs of the Landau quantization levels due to the spinor‐type wave functions. The energy levels depend on the amplitudes of the magnetic and electric fields, on the g‐factor gh, and on the parameter of nonparabolicity C. The dependences of two energy levels in any pair on the Zeeman parameter Zh=ghmh/4m0, where mh is the hole effective mass, are nonmonotonous and without intersections. The smallest distance between them at C=0 takes place at the value Zh=n/2, where n is the order of the chirality terms determined by the RSOC and is the same for any quantum number of the Landau quantization.</description><identifier>ISSN: 0370-1972</identifier><identifier>ISSN: 1521-3951</identifier><identifier>EISSN: 1521-3951</identifier><identifier>DOI: 10.1002/pssb.201451296</identifier><language>eng</language><publisher>Blackwell Publishing Ltd</publisher><subject>Crystal lattices ; Dispersions ; Electric fields ; Energy levels ; heavy holes ; Landau quantization ; Mathematical analysis ; nonparabolicity ; Pauli equation ; Quantization ; Rashba spin-orbit coupling ; Spin-orbit interactions ; Splitting ; Two dimensional ; Zeeman splitting</subject><ispartof>Physica Status Solidi. B: Basic Solid State Physics, 2015-04, Vol.252 (4), p.730-742</ispartof><rights>2014 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5336-3982ddcf83e48b1f3d87a1308a6464aff48fbe1fec2199528f681c2e5d27fe3a3</citedby><cites>FETCH-LOGICAL-c5336-3982ddcf83e48b1f3d87a1308a6464aff48fbe1fec2199528f681c2e5d27fe3a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-166337$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-117507$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Moskalenko, S. A.</creatorcontrib><creatorcontrib>Podlesny, I. V.</creatorcontrib><creatorcontrib>Dumanov, E. V.</creatorcontrib><creatorcontrib>Liberman, M. A.</creatorcontrib><creatorcontrib>Novikov, B. V.</creatorcontrib><title>Landau quantization, Rashba spin-orbit coupling and Zeeman splitting of two-dimensional heavy-hole gases</title><title>Physica Status Solidi. B: Basic Solid State Physics</title><addtitle>Phys. Status Solidi B</addtitle><description>The origin of the g‐factor of two‐dimensional (2D) electrons and holes moving in the periodic crystal lattice potential with perpendicular magnetic and electric fields is discussed. The Pauli equation describing the Landau quantization accompanied by the Rashba spin–orbit coupling (RSOC) and Zeeman splitting (ZS) for 2D heavy holes with nonparabolic dispersion law is solved exactly. The solutions have the form of pairs of the Landau quantization levels due to the spinor‐type wave functions. The energy levels depend on the amplitudes of the magnetic and electric fields, on the g‐factor gh, and on the parameter of nonparabolicity C. The dependences of two energy levels in any pair on the Zeeman parameter Zh=ghmh/4m0, where mh is the hole effective mass, are nonmonotonous and without intersections. The smallest distance between them at C=0 takes place at the value Zh=n/2, where n is the order of the chirality terms determined by the RSOC and is the same for any quantum number of the Landau quantization.</description><subject>Crystal lattices</subject><subject>Dispersions</subject><subject>Electric fields</subject><subject>Energy levels</subject><subject>heavy holes</subject><subject>Landau quantization</subject><subject>Mathematical analysis</subject><subject>nonparabolicity</subject><subject>Pauli equation</subject><subject>Quantization</subject><subject>Rashba spin-orbit coupling</subject><subject>Spin-orbit interactions</subject><subject>Splitting</subject><subject>Two dimensional</subject><subject>Zeeman splitting</subject><issn>0370-1972</issn><issn>1521-3951</issn><issn>1521-3951</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkU1v1DAQhi0EEkvplbOPHJrFYydxciyFfoilIFpA2os1ScYb02ycxkmX5deT1Var3nqyNH6eVzN6GXsHYg5CyA9dCMVcCogTkHn6gs0gkRCpPIGXbCaUFhHkWr5mb0L4I4TQoGDG6gW2FY78fsR2cP9wcL494T8w1AXy0Lk28n3hBl76sWtcu-ITzpdEa2yn78YNw27oLR82PqrcmtowJWDDa8KHbVT7hvgKA4W37JXFJtDx43vEfp5_vj27jBbfLq7OThdRmSiVTutmsqpKmymKswKsqjKNoESGaZzGaG2c2YLAUikhzxOZ2TSDUlJSSW1JoTpiJ_vcsKFuLEzXuzX2W-PRmU_u16nx_cqE0QDoROgJj57H74baQJoqtePf7_mu9_cjhcGsXSipabAlP4YJyxKtFUA-ofM9WvY-hJ7sIRyE2TVmdo2ZQ2OTkO-FjWto-wxtvt_cfHzqPt7hwkB_Dy72dybVSifm9_WFSb9e5svll3OTq_9FeawH</recordid><startdate>201504</startdate><enddate>201504</enddate><creator>Moskalenko, S. A.</creator><creator>Podlesny, I. V.</creator><creator>Dumanov, E. V.</creator><creator>Liberman, M. A.</creator><creator>Novikov, B. V.</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8V</scope><scope>DG7</scope></search><sort><creationdate>201504</creationdate><title>Landau quantization, Rashba spin-orbit coupling and Zeeman splitting of two-dimensional heavy-hole gases</title><author>Moskalenko, S. A. ; Podlesny, I. V. ; Dumanov, E. V. ; Liberman, M. A. ; Novikov, B. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5336-3982ddcf83e48b1f3d87a1308a6464aff48fbe1fec2199528f681c2e5d27fe3a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Crystal lattices</topic><topic>Dispersions</topic><topic>Electric fields</topic><topic>Energy levels</topic><topic>heavy holes</topic><topic>Landau quantization</topic><topic>Mathematical analysis</topic><topic>nonparabolicity</topic><topic>Pauli equation</topic><topic>Quantization</topic><topic>Rashba spin-orbit coupling</topic><topic>Spin-orbit interactions</topic><topic>Splitting</topic><topic>Two dimensional</topic><topic>Zeeman splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moskalenko, S. A.</creatorcontrib><creatorcontrib>Podlesny, I. V.</creatorcontrib><creatorcontrib>Dumanov, E. V.</creatorcontrib><creatorcontrib>Liberman, M. A.</creatorcontrib><creatorcontrib>Novikov, B. V.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Kungliga Tekniska Högskolan</collection><collection>SWEPUB Stockholms universitet</collection><jtitle>Physica Status Solidi. B: Basic Solid State Physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moskalenko, S. A.</au><au>Podlesny, I. V.</au><au>Dumanov, E. V.</au><au>Liberman, M. A.</au><au>Novikov, B. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Landau quantization, Rashba spin-orbit coupling and Zeeman splitting of two-dimensional heavy-hole gases</atitle><jtitle>Physica Status Solidi. B: Basic Solid State Physics</jtitle><addtitle>Phys. Status Solidi B</addtitle><date>2015-04</date><risdate>2015</risdate><volume>252</volume><issue>4</issue><spage>730</spage><epage>742</epage><pages>730-742</pages><issn>0370-1972</issn><issn>1521-3951</issn><eissn>1521-3951</eissn><abstract>The origin of the g‐factor of two‐dimensional (2D) electrons and holes moving in the periodic crystal lattice potential with perpendicular magnetic and electric fields is discussed. The Pauli equation describing the Landau quantization accompanied by the Rashba spin–orbit coupling (RSOC) and Zeeman splitting (ZS) for 2D heavy holes with nonparabolic dispersion law is solved exactly. The solutions have the form of pairs of the Landau quantization levels due to the spinor‐type wave functions. The energy levels depend on the amplitudes of the magnetic and electric fields, on the g‐factor gh, and on the parameter of nonparabolicity C. The dependences of two energy levels in any pair on the Zeeman parameter Zh=ghmh/4m0, where mh is the hole effective mass, are nonmonotonous and without intersections. The smallest distance between them at C=0 takes place at the value Zh=n/2, where n is the order of the chirality terms determined by the RSOC and is the same for any quantum number of the Landau quantization.</abstract><pub>Blackwell Publishing Ltd</pub><doi>10.1002/pssb.201451296</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0370-1972
ispartof Physica Status Solidi. B: Basic Solid State Physics, 2015-04, Vol.252 (4), p.730-742
issn 0370-1972
1521-3951
1521-3951
language eng
recordid cdi_swepub_primary_oai_DiVA_org_su_117507
source Wiley-Blackwell Read & Publish Collection
subjects Crystal lattices
Dispersions
Electric fields
Energy levels
heavy holes
Landau quantization
Mathematical analysis
nonparabolicity
Pauli equation
Quantization
Rashba spin-orbit coupling
Spin-orbit interactions
Splitting
Two dimensional
Zeeman splitting
title Landau quantization, Rashba spin-orbit coupling and Zeeman splitting of two-dimensional heavy-hole gases
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T08%3A14%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Landau%20quantization,%20Rashba%20spin-orbit%20coupling%20and%20Zeeman%20splitting%20of%20two-dimensional%20heavy-hole%20gases&rft.jtitle=Physica%20Status%20Solidi.%20B:%20Basic%20Solid%20State%20Physics&rft.au=Moskalenko,%20S.%20A.&rft.date=2015-04&rft.volume=252&rft.issue=4&rft.spage=730&rft.epage=742&rft.pages=730-742&rft.issn=0370-1972&rft.eissn=1521-3951&rft_id=info:doi/10.1002/pssb.201451296&rft_dat=%3Cproquest_swepu%3E1685773119%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5336-3982ddcf83e48b1f3d87a1308a6464aff48fbe1fec2199528f681c2e5d27fe3a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1685773119&rft_id=info:pmid/&rfr_iscdi=true