Loading…
Landau quantization, Rashba spin-orbit coupling and Zeeman splitting of two-dimensional heavy-hole gases
The origin of the g‐factor of two‐dimensional (2D) electrons and holes moving in the periodic crystal lattice potential with perpendicular magnetic and electric fields is discussed. The Pauli equation describing the Landau quantization accompanied by the Rashba spin–orbit coupling (RSOC) and Zeeman...
Saved in:
Published in: | Physica Status Solidi. B: Basic Solid State Physics 2015-04, Vol.252 (4), p.730-742 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c5336-3982ddcf83e48b1f3d87a1308a6464aff48fbe1fec2199528f681c2e5d27fe3a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c5336-3982ddcf83e48b1f3d87a1308a6464aff48fbe1fec2199528f681c2e5d27fe3a3 |
container_end_page | 742 |
container_issue | 4 |
container_start_page | 730 |
container_title | Physica Status Solidi. B: Basic Solid State Physics |
container_volume | 252 |
creator | Moskalenko, S. A. Podlesny, I. V. Dumanov, E. V. Liberman, M. A. Novikov, B. V. |
description | The origin of the g‐factor of two‐dimensional (2D) electrons and holes moving in the periodic crystal lattice potential with perpendicular magnetic and electric fields is discussed. The Pauli equation describing the Landau quantization accompanied by the Rashba spin–orbit coupling (RSOC) and Zeeman splitting (ZS) for 2D heavy holes with nonparabolic dispersion law is solved exactly. The solutions have the form of pairs of the Landau quantization levels due to the spinor‐type wave functions. The energy levels depend on the amplitudes of the magnetic and electric fields, on the g‐factor gh, and on the parameter of nonparabolicity C. The dependences of two energy levels in any pair on the Zeeman parameter Zh=ghmh/4m0, where mh is the hole effective mass, are nonmonotonous and without intersections. The smallest distance between them at C=0 takes place at the value Zh=n/2, where n is the order of the chirality terms determined by the RSOC and is the same for any quantum number of the Landau quantization. |
doi_str_mv | 10.1002/pssb.201451296 |
format | article |
fullrecord | <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_su_117507</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1685773119</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5336-3982ddcf83e48b1f3d87a1308a6464aff48fbe1fec2199528f681c2e5d27fe3a3</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi0EEkvplbOPHJrFYydxciyFfoilIFpA2os1ScYb02ycxkmX5deT1Var3nqyNH6eVzN6GXsHYg5CyA9dCMVcCogTkHn6gs0gkRCpPIGXbCaUFhHkWr5mb0L4I4TQoGDG6gW2FY78fsR2cP9wcL494T8w1AXy0Lk28n3hBl76sWtcu-ITzpdEa2yn78YNw27oLR82PqrcmtowJWDDa8KHbVT7hvgKA4W37JXFJtDx43vEfp5_vj27jBbfLq7OThdRmSiVTutmsqpKmymKswKsqjKNoESGaZzGaG2c2YLAUikhzxOZ2TSDUlJSSW1JoTpiJ_vcsKFuLEzXuzX2W-PRmU_u16nx_cqE0QDoROgJj57H74baQJoqtePf7_mu9_cjhcGsXSipabAlP4YJyxKtFUA-ofM9WvY-hJ7sIRyE2TVmdo2ZQ2OTkO-FjWto-wxtvt_cfHzqPt7hwkB_Dy72dybVSifm9_WFSb9e5svll3OTq_9FeawH</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1685773119</pqid></control><display><type>article</type><title>Landau quantization, Rashba spin-orbit coupling and Zeeman splitting of two-dimensional heavy-hole gases</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Moskalenko, S. A. ; Podlesny, I. V. ; Dumanov, E. V. ; Liberman, M. A. ; Novikov, B. V.</creator><creatorcontrib>Moskalenko, S. A. ; Podlesny, I. V. ; Dumanov, E. V. ; Liberman, M. A. ; Novikov, B. V.</creatorcontrib><description>The origin of the g‐factor of two‐dimensional (2D) electrons and holes moving in the periodic crystal lattice potential with perpendicular magnetic and electric fields is discussed. The Pauli equation describing the Landau quantization accompanied by the Rashba spin–orbit coupling (RSOC) and Zeeman splitting (ZS) for 2D heavy holes with nonparabolic dispersion law is solved exactly. The solutions have the form of pairs of the Landau quantization levels due to the spinor‐type wave functions. The energy levels depend on the amplitudes of the magnetic and electric fields, on the g‐factor gh, and on the parameter of nonparabolicity C. The dependences of two energy levels in any pair on the Zeeman parameter Zh=ghmh/4m0, where mh is the hole effective mass, are nonmonotonous and without intersections. The smallest distance between them at C=0 takes place at the value Zh=n/2, where n is the order of the chirality terms determined by the RSOC and is the same for any quantum number of the Landau quantization.</description><identifier>ISSN: 0370-1972</identifier><identifier>ISSN: 1521-3951</identifier><identifier>EISSN: 1521-3951</identifier><identifier>DOI: 10.1002/pssb.201451296</identifier><language>eng</language><publisher>Blackwell Publishing Ltd</publisher><subject>Crystal lattices ; Dispersions ; Electric fields ; Energy levels ; heavy holes ; Landau quantization ; Mathematical analysis ; nonparabolicity ; Pauli equation ; Quantization ; Rashba spin-orbit coupling ; Spin-orbit interactions ; Splitting ; Two dimensional ; Zeeman splitting</subject><ispartof>Physica Status Solidi. B: Basic Solid State Physics, 2015-04, Vol.252 (4), p.730-742</ispartof><rights>2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5336-3982ddcf83e48b1f3d87a1308a6464aff48fbe1fec2199528f681c2e5d27fe3a3</citedby><cites>FETCH-LOGICAL-c5336-3982ddcf83e48b1f3d87a1308a6464aff48fbe1fec2199528f681c2e5d27fe3a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-166337$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-117507$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Moskalenko, S. A.</creatorcontrib><creatorcontrib>Podlesny, I. V.</creatorcontrib><creatorcontrib>Dumanov, E. V.</creatorcontrib><creatorcontrib>Liberman, M. A.</creatorcontrib><creatorcontrib>Novikov, B. V.</creatorcontrib><title>Landau quantization, Rashba spin-orbit coupling and Zeeman splitting of two-dimensional heavy-hole gases</title><title>Physica Status Solidi. B: Basic Solid State Physics</title><addtitle>Phys. Status Solidi B</addtitle><description>The origin of the g‐factor of two‐dimensional (2D) electrons and holes moving in the periodic crystal lattice potential with perpendicular magnetic and electric fields is discussed. The Pauli equation describing the Landau quantization accompanied by the Rashba spin–orbit coupling (RSOC) and Zeeman splitting (ZS) for 2D heavy holes with nonparabolic dispersion law is solved exactly. The solutions have the form of pairs of the Landau quantization levels due to the spinor‐type wave functions. The energy levels depend on the amplitudes of the magnetic and electric fields, on the g‐factor gh, and on the parameter of nonparabolicity C. The dependences of two energy levels in any pair on the Zeeman parameter Zh=ghmh/4m0, where mh is the hole effective mass, are nonmonotonous and without intersections. The smallest distance between them at C=0 takes place at the value Zh=n/2, where n is the order of the chirality terms determined by the RSOC and is the same for any quantum number of the Landau quantization.</description><subject>Crystal lattices</subject><subject>Dispersions</subject><subject>Electric fields</subject><subject>Energy levels</subject><subject>heavy holes</subject><subject>Landau quantization</subject><subject>Mathematical analysis</subject><subject>nonparabolicity</subject><subject>Pauli equation</subject><subject>Quantization</subject><subject>Rashba spin-orbit coupling</subject><subject>Spin-orbit interactions</subject><subject>Splitting</subject><subject>Two dimensional</subject><subject>Zeeman splitting</subject><issn>0370-1972</issn><issn>1521-3951</issn><issn>1521-3951</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkU1v1DAQhi0EEkvplbOPHJrFYydxciyFfoilIFpA2os1ScYb02ycxkmX5deT1Var3nqyNH6eVzN6GXsHYg5CyA9dCMVcCogTkHn6gs0gkRCpPIGXbCaUFhHkWr5mb0L4I4TQoGDG6gW2FY78fsR2cP9wcL494T8w1AXy0Lk28n3hBl76sWtcu-ITzpdEa2yn78YNw27oLR82PqrcmtowJWDDa8KHbVT7hvgKA4W37JXFJtDx43vEfp5_vj27jBbfLq7OThdRmSiVTutmsqpKmymKswKsqjKNoESGaZzGaG2c2YLAUikhzxOZ2TSDUlJSSW1JoTpiJ_vcsKFuLEzXuzX2W-PRmU_u16nx_cqE0QDoROgJj57H74baQJoqtePf7_mu9_cjhcGsXSipabAlP4YJyxKtFUA-ofM9WvY-hJ7sIRyE2TVmdo2ZQ2OTkO-FjWto-wxtvt_cfHzqPt7hwkB_Dy72dybVSifm9_WFSb9e5svll3OTq_9FeawH</recordid><startdate>201504</startdate><enddate>201504</enddate><creator>Moskalenko, S. A.</creator><creator>Podlesny, I. V.</creator><creator>Dumanov, E. V.</creator><creator>Liberman, M. A.</creator><creator>Novikov, B. V.</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8V</scope><scope>DG7</scope></search><sort><creationdate>201504</creationdate><title>Landau quantization, Rashba spin-orbit coupling and Zeeman splitting of two-dimensional heavy-hole gases</title><author>Moskalenko, S. A. ; Podlesny, I. V. ; Dumanov, E. V. ; Liberman, M. A. ; Novikov, B. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5336-3982ddcf83e48b1f3d87a1308a6464aff48fbe1fec2199528f681c2e5d27fe3a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Crystal lattices</topic><topic>Dispersions</topic><topic>Electric fields</topic><topic>Energy levels</topic><topic>heavy holes</topic><topic>Landau quantization</topic><topic>Mathematical analysis</topic><topic>nonparabolicity</topic><topic>Pauli equation</topic><topic>Quantization</topic><topic>Rashba spin-orbit coupling</topic><topic>Spin-orbit interactions</topic><topic>Splitting</topic><topic>Two dimensional</topic><topic>Zeeman splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moskalenko, S. A.</creatorcontrib><creatorcontrib>Podlesny, I. V.</creatorcontrib><creatorcontrib>Dumanov, E. V.</creatorcontrib><creatorcontrib>Liberman, M. A.</creatorcontrib><creatorcontrib>Novikov, B. V.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Kungliga Tekniska Högskolan</collection><collection>SWEPUB Stockholms universitet</collection><jtitle>Physica Status Solidi. B: Basic Solid State Physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moskalenko, S. A.</au><au>Podlesny, I. V.</au><au>Dumanov, E. V.</au><au>Liberman, M. A.</au><au>Novikov, B. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Landau quantization, Rashba spin-orbit coupling and Zeeman splitting of two-dimensional heavy-hole gases</atitle><jtitle>Physica Status Solidi. B: Basic Solid State Physics</jtitle><addtitle>Phys. Status Solidi B</addtitle><date>2015-04</date><risdate>2015</risdate><volume>252</volume><issue>4</issue><spage>730</spage><epage>742</epage><pages>730-742</pages><issn>0370-1972</issn><issn>1521-3951</issn><eissn>1521-3951</eissn><abstract>The origin of the g‐factor of two‐dimensional (2D) electrons and holes moving in the periodic crystal lattice potential with perpendicular magnetic and electric fields is discussed. The Pauli equation describing the Landau quantization accompanied by the Rashba spin–orbit coupling (RSOC) and Zeeman splitting (ZS) for 2D heavy holes with nonparabolic dispersion law is solved exactly. The solutions have the form of pairs of the Landau quantization levels due to the spinor‐type wave functions. The energy levels depend on the amplitudes of the magnetic and electric fields, on the g‐factor gh, and on the parameter of nonparabolicity C. The dependences of two energy levels in any pair on the Zeeman parameter Zh=ghmh/4m0, where mh is the hole effective mass, are nonmonotonous and without intersections. The smallest distance between them at C=0 takes place at the value Zh=n/2, where n is the order of the chirality terms determined by the RSOC and is the same for any quantum number of the Landau quantization.</abstract><pub>Blackwell Publishing Ltd</pub><doi>10.1002/pssb.201451296</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0370-1972 |
ispartof | Physica Status Solidi. B: Basic Solid State Physics, 2015-04, Vol.252 (4), p.730-742 |
issn | 0370-1972 1521-3951 1521-3951 |
language | eng |
recordid | cdi_swepub_primary_oai_DiVA_org_su_117507 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Crystal lattices Dispersions Electric fields Energy levels heavy holes Landau quantization Mathematical analysis nonparabolicity Pauli equation Quantization Rashba spin-orbit coupling Spin-orbit interactions Splitting Two dimensional Zeeman splitting |
title | Landau quantization, Rashba spin-orbit coupling and Zeeman splitting of two-dimensional heavy-hole gases |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T08%3A14%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Landau%20quantization,%20Rashba%20spin-orbit%20coupling%20and%20Zeeman%20splitting%20of%20two-dimensional%20heavy-hole%20gases&rft.jtitle=Physica%20Status%20Solidi.%20B:%20Basic%20Solid%20State%20Physics&rft.au=Moskalenko,%20S.%20A.&rft.date=2015-04&rft.volume=252&rft.issue=4&rft.spage=730&rft.epage=742&rft.pages=730-742&rft.issn=0370-1972&rft.eissn=1521-3951&rft_id=info:doi/10.1002/pssb.201451296&rft_dat=%3Cproquest_swepu%3E1685773119%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5336-3982ddcf83e48b1f3d87a1308a6464aff48fbe1fec2199528f681c2e5d27fe3a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1685773119&rft_id=info:pmid/&rfr_iscdi=true |