Loading…
Warm-air advection, air mass transformation and fog causes rapid ice melt
Direct observations during intense warm‐air advection over the East Siberian Sea reveal a period of rapid sea‐ice melt. A semistationary, high‐pressure system north of the Bering Strait forced northward advection of warm, moist air from the continent. Air‐mass transformation over melting sea ice for...
Saved in:
Published in: | Geophysical research letters 2015-07, Vol.42 (13), p.5594-5602 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c6922-a82039de20d0190306f6d0663bba80345c330005edb72f510dc22f463052919f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c6922-a82039de20d0190306f6d0663bba80345c330005edb72f510dc22f463052919f3 |
container_end_page | 5602 |
container_issue | 13 |
container_start_page | 5594 |
container_title | Geophysical research letters |
container_volume | 42 |
creator | Tjernström, Michael Shupe, Matthew D. Brooks, Ian M. Persson, P. Ola G. Prytherch, John Salisbury, Dominic J. Sedlar, Joseph Achtert, Peggy Brooks, Barbara J. Johnston, Paul E. Sotiropoulou, Georgia Wolfe, Dan |
description | Direct observations during intense warm‐air advection over the East Siberian Sea reveal a period of rapid sea‐ice melt. A semistationary, high‐pressure system north of the Bering Strait forced northward advection of warm, moist air from the continent. Air‐mass transformation over melting sea ice formed a strong, surface‐based temperature inversion in which dense fog formed. This induced a positive net longwave radiation at the surface while reducing net solar radiation only marginally; the inversion also resulted in downward turbulent heat flux. The sum of these processes enhanced the surface energy flux by an average of ~15 W m−2 for a week. Satellite images before and after the episode show sea‐ice concentrations decreasing from > 90% to ~50% over a large area affected by the air‐mass transformation. We argue that this rapid melt was triggered by the increased heat flux from the atmosphere due to the warm‐air advection.
Key Points
The importance of both large‐scale dynamics and local feedback for sea‐ice melt
The location of extra melt near the ice edge, due to the air‐mass transformation
The role of clouds, longwave radiation and turbulent heat flux for sea‐ice melt |
doi_str_mv | 10.1002/2015GL064373 |
format | article |
fullrecord | <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_su_120094</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3760509401</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6922-a82039de20d0190306f6d0663bba80345c330005edb72f510dc22f463052919f3</originalsourceid><addsrcrecordid>eNqFkcFu1DAQhi1UJLalNx7AUi89NDD2OHZ8bAuklVagboEeLW_iVC5JvNgJpW-PV4tKxaGcPNZ8_2g-DSFvGLxlAPwdB1bWS5ACFb4gC6aFKCoAtUcWADrXXMlXZD-lOwBAQLYglzc2DoX1kdr2p2smH8YTuv0ONiU6RTumLsTBbhvUji3twi1t7JxcotFufEt94-jg-uk1ednZPrnDP-8B-frxw5fzi2L5ub48P10WjdScF7bigLp1HFpgOm8hO9mClLhe2wpQlA1i3q507VrxrmTQNpx3QiKUXDPd4QE52c1N924zr80m-sHGBxOsN-_9t1MT4q1Js2F865zx4x2-ieHH7NJkBp8a1_d2dGFOhlVQodRCV_9HFau0ElqojB79g96FOY7Z2zDNIHuprPkcJbVGLpjCv0JNDClF1z0qMTDbu5qnd8043-H3vncPz7KmXi1LZMBzqNiFfJrcr8eQjd-NVKhKc_OpNquL1dVZfV2Za_wNS4muOA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1699324173</pqid></control><display><type>article</type><title>Warm-air advection, air mass transformation and fog causes rapid ice melt</title><source>Wiley Online Library AGU 2016</source><creator>Tjernström, Michael ; Shupe, Matthew D. ; Brooks, Ian M. ; Persson, P. Ola G. ; Prytherch, John ; Salisbury, Dominic J. ; Sedlar, Joseph ; Achtert, Peggy ; Brooks, Barbara J. ; Johnston, Paul E. ; Sotiropoulou, Georgia ; Wolfe, Dan</creator><creatorcontrib>Tjernström, Michael ; Shupe, Matthew D. ; Brooks, Ian M. ; Persson, P. Ola G. ; Prytherch, John ; Salisbury, Dominic J. ; Sedlar, Joseph ; Achtert, Peggy ; Brooks, Barbara J. ; Johnston, Paul E. ; Sotiropoulou, Georgia ; Wolfe, Dan</creatorcontrib><description>Direct observations during intense warm‐air advection over the East Siberian Sea reveal a period of rapid sea‐ice melt. A semistationary, high‐pressure system north of the Bering Strait forced northward advection of warm, moist air from the continent. Air‐mass transformation over melting sea ice formed a strong, surface‐based temperature inversion in which dense fog formed. This induced a positive net longwave radiation at the surface while reducing net solar radiation only marginally; the inversion also resulted in downward turbulent heat flux. The sum of these processes enhanced the surface energy flux by an average of ~15 W m−2 for a week. Satellite images before and after the episode show sea‐ice concentrations decreasing from > 90% to ~50% over a large area affected by the air‐mass transformation. We argue that this rapid melt was triggered by the increased heat flux from the atmosphere due to the warm‐air advection.
Key Points
The importance of both large‐scale dynamics and local feedback for sea‐ice melt
The location of extra melt near the ice edge, due to the air‐mass transformation
The role of clouds, longwave radiation and turbulent heat flux for sea‐ice melt</description><identifier>ISSN: 0094-8276</identifier><identifier>ISSN: 1944-8007</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1002/2015GL064373</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Advection ; Aerodynamics ; Air masses ; Air temperature ; Arctic ; Area ; atmosfärvetenskap och oceanografi ; Atmosphere ; Atmospheric Sciences and Oceanography ; Energy ; Energy flux ; Energy transfer ; Fluctuations ; Fluid dynamics ; Fog ; Heat ; Heat flux ; Heat transfer ; Ice formation ; Ice melting ; Long wave radiation ; Marine ; Melting ; Melts ; Radiation ; Satellite imagery ; Satellites ; Sea ice ; Sea ice concentrations ; sea-ice melt ; Solar radiation ; Surface energy ; surface energy balance ; surface inversion ; Surface properties ; Surface temperature ; Temperature ; Temperature effects ; Temperature inversion ; Temperature inversions ; Transformations ; Turbulence ; Turbulent heat flux ; warm-air advection</subject><ispartof>Geophysical research letters, 2015-07, Vol.42 (13), p.5594-5602</ispartof><rights>2015. The Authors.</rights><rights>2015. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6922-a82039de20d0190306f6d0663bba80345c330005edb72f510dc22f463052919f3</citedby><cites>FETCH-LOGICAL-c6922-a82039de20d0190306f6d0663bba80345c330005edb72f510dc22f463052919f3</cites><orcidid>0000-0002-6908-7410 ; 0000-0002-0973-9982</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2015GL064373$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2015GL064373$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,11514,27924,27925,46468,46892</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-120094$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Tjernström, Michael</creatorcontrib><creatorcontrib>Shupe, Matthew D.</creatorcontrib><creatorcontrib>Brooks, Ian M.</creatorcontrib><creatorcontrib>Persson, P. Ola G.</creatorcontrib><creatorcontrib>Prytherch, John</creatorcontrib><creatorcontrib>Salisbury, Dominic J.</creatorcontrib><creatorcontrib>Sedlar, Joseph</creatorcontrib><creatorcontrib>Achtert, Peggy</creatorcontrib><creatorcontrib>Brooks, Barbara J.</creatorcontrib><creatorcontrib>Johnston, Paul E.</creatorcontrib><creatorcontrib>Sotiropoulou, Georgia</creatorcontrib><creatorcontrib>Wolfe, Dan</creatorcontrib><title>Warm-air advection, air mass transformation and fog causes rapid ice melt</title><title>Geophysical research letters</title><addtitle>Geophys. Res. Lett</addtitle><description>Direct observations during intense warm‐air advection over the East Siberian Sea reveal a period of rapid sea‐ice melt. A semistationary, high‐pressure system north of the Bering Strait forced northward advection of warm, moist air from the continent. Air‐mass transformation over melting sea ice formed a strong, surface‐based temperature inversion in which dense fog formed. This induced a positive net longwave radiation at the surface while reducing net solar radiation only marginally; the inversion also resulted in downward turbulent heat flux. The sum of these processes enhanced the surface energy flux by an average of ~15 W m−2 for a week. Satellite images before and after the episode show sea‐ice concentrations decreasing from > 90% to ~50% over a large area affected by the air‐mass transformation. We argue that this rapid melt was triggered by the increased heat flux from the atmosphere due to the warm‐air advection.
Key Points
The importance of both large‐scale dynamics and local feedback for sea‐ice melt
The location of extra melt near the ice edge, due to the air‐mass transformation
The role of clouds, longwave radiation and turbulent heat flux for sea‐ice melt</description><subject>Advection</subject><subject>Aerodynamics</subject><subject>Air masses</subject><subject>Air temperature</subject><subject>Arctic</subject><subject>Area</subject><subject>atmosfärvetenskap och oceanografi</subject><subject>Atmosphere</subject><subject>Atmospheric Sciences and Oceanography</subject><subject>Energy</subject><subject>Energy flux</subject><subject>Energy transfer</subject><subject>Fluctuations</subject><subject>Fluid dynamics</subject><subject>Fog</subject><subject>Heat</subject><subject>Heat flux</subject><subject>Heat transfer</subject><subject>Ice formation</subject><subject>Ice melting</subject><subject>Long wave radiation</subject><subject>Marine</subject><subject>Melting</subject><subject>Melts</subject><subject>Radiation</subject><subject>Satellite imagery</subject><subject>Satellites</subject><subject>Sea ice</subject><subject>Sea ice concentrations</subject><subject>sea-ice melt</subject><subject>Solar radiation</subject><subject>Surface energy</subject><subject>surface energy balance</subject><subject>surface inversion</subject><subject>Surface properties</subject><subject>Surface temperature</subject><subject>Temperature</subject><subject>Temperature effects</subject><subject>Temperature inversion</subject><subject>Temperature inversions</subject><subject>Transformations</subject><subject>Turbulence</subject><subject>Turbulent heat flux</subject><subject>warm-air advection</subject><issn>0094-8276</issn><issn>1944-8007</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkcFu1DAQhi1UJLalNx7AUi89NDD2OHZ8bAuklVagboEeLW_iVC5JvNgJpW-PV4tKxaGcPNZ8_2g-DSFvGLxlAPwdB1bWS5ACFb4gC6aFKCoAtUcWADrXXMlXZD-lOwBAQLYglzc2DoX1kdr2p2smH8YTuv0ONiU6RTumLsTBbhvUji3twi1t7JxcotFufEt94-jg-uk1ednZPrnDP-8B-frxw5fzi2L5ub48P10WjdScF7bigLp1HFpgOm8hO9mClLhe2wpQlA1i3q507VrxrmTQNpx3QiKUXDPd4QE52c1N924zr80m-sHGBxOsN-_9t1MT4q1Js2F865zx4x2-ieHH7NJkBp8a1_d2dGFOhlVQodRCV_9HFau0ElqojB79g96FOY7Z2zDNIHuprPkcJbVGLpjCv0JNDClF1z0qMTDbu5qnd8043-H3vncPz7KmXi1LZMBzqNiFfJrcr8eQjd-NVKhKc_OpNquL1dVZfV2Za_wNS4muOA</recordid><startdate>20150716</startdate><enddate>20150716</enddate><creator>Tjernström, Michael</creator><creator>Shupe, Matthew D.</creator><creator>Brooks, Ian M.</creator><creator>Persson, P. Ola G.</creator><creator>Prytherch, John</creator><creator>Salisbury, Dominic J.</creator><creator>Sedlar, Joseph</creator><creator>Achtert, Peggy</creator><creator>Brooks, Barbara J.</creator><creator>Johnston, Paul E.</creator><creator>Sotiropoulou, Georgia</creator><creator>Wolfe, Dan</creator><general>Blackwell Publishing Ltd</general><general>John Wiley & Sons, Inc</general><scope>BSCLL</scope><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>7UA</scope><scope>C1K</scope><scope>ABAVF</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>DG7</scope><scope>ZZAVC</scope><orcidid>https://orcid.org/0000-0002-6908-7410</orcidid><orcidid>https://orcid.org/0000-0002-0973-9982</orcidid></search><sort><creationdate>20150716</creationdate><title>Warm-air advection, air mass transformation and fog causes rapid ice melt</title><author>Tjernström, Michael ; Shupe, Matthew D. ; Brooks, Ian M. ; Persson, P. Ola G. ; Prytherch, John ; Salisbury, Dominic J. ; Sedlar, Joseph ; Achtert, Peggy ; Brooks, Barbara J. ; Johnston, Paul E. ; Sotiropoulou, Georgia ; Wolfe, Dan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6922-a82039de20d0190306f6d0663bba80345c330005edb72f510dc22f463052919f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Advection</topic><topic>Aerodynamics</topic><topic>Air masses</topic><topic>Air temperature</topic><topic>Arctic</topic><topic>Area</topic><topic>atmosfärvetenskap och oceanografi</topic><topic>Atmosphere</topic><topic>Atmospheric Sciences and Oceanography</topic><topic>Energy</topic><topic>Energy flux</topic><topic>Energy transfer</topic><topic>Fluctuations</topic><topic>Fluid dynamics</topic><topic>Fog</topic><topic>Heat</topic><topic>Heat flux</topic><topic>Heat transfer</topic><topic>Ice formation</topic><topic>Ice melting</topic><topic>Long wave radiation</topic><topic>Marine</topic><topic>Melting</topic><topic>Melts</topic><topic>Radiation</topic><topic>Satellite imagery</topic><topic>Satellites</topic><topic>Sea ice</topic><topic>Sea ice concentrations</topic><topic>sea-ice melt</topic><topic>Solar radiation</topic><topic>Surface energy</topic><topic>surface energy balance</topic><topic>surface inversion</topic><topic>Surface properties</topic><topic>Surface temperature</topic><topic>Temperature</topic><topic>Temperature effects</topic><topic>Temperature inversion</topic><topic>Temperature inversions</topic><topic>Transformations</topic><topic>Turbulence</topic><topic>Turbulent heat flux</topic><topic>warm-air advection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tjernström, Michael</creatorcontrib><creatorcontrib>Shupe, Matthew D.</creatorcontrib><creatorcontrib>Brooks, Ian M.</creatorcontrib><creatorcontrib>Persson, P. Ola G.</creatorcontrib><creatorcontrib>Prytherch, John</creatorcontrib><creatorcontrib>Salisbury, Dominic J.</creatorcontrib><creatorcontrib>Sedlar, Joseph</creatorcontrib><creatorcontrib>Achtert, Peggy</creatorcontrib><creatorcontrib>Brooks, Barbara J.</creatorcontrib><creatorcontrib>Johnston, Paul E.</creatorcontrib><creatorcontrib>Sotiropoulou, Georgia</creatorcontrib><creatorcontrib>Wolfe, Dan</creatorcontrib><collection>Istex</collection><collection>Wiley_OA刊</collection><collection>Wiley Online Library Free Content</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>SWEPUB Stockholms universitet full text</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Stockholms universitet</collection><collection>SwePub Articles full text</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tjernström, Michael</au><au>Shupe, Matthew D.</au><au>Brooks, Ian M.</au><au>Persson, P. Ola G.</au><au>Prytherch, John</au><au>Salisbury, Dominic J.</au><au>Sedlar, Joseph</au><au>Achtert, Peggy</au><au>Brooks, Barbara J.</au><au>Johnston, Paul E.</au><au>Sotiropoulou, Georgia</au><au>Wolfe, Dan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Warm-air advection, air mass transformation and fog causes rapid ice melt</atitle><jtitle>Geophysical research letters</jtitle><addtitle>Geophys. Res. Lett</addtitle><date>2015-07-16</date><risdate>2015</risdate><volume>42</volume><issue>13</issue><spage>5594</spage><epage>5602</epage><pages>5594-5602</pages><issn>0094-8276</issn><issn>1944-8007</issn><eissn>1944-8007</eissn><abstract>Direct observations during intense warm‐air advection over the East Siberian Sea reveal a period of rapid sea‐ice melt. A semistationary, high‐pressure system north of the Bering Strait forced northward advection of warm, moist air from the continent. Air‐mass transformation over melting sea ice formed a strong, surface‐based temperature inversion in which dense fog formed. This induced a positive net longwave radiation at the surface while reducing net solar radiation only marginally; the inversion also resulted in downward turbulent heat flux. The sum of these processes enhanced the surface energy flux by an average of ~15 W m−2 for a week. Satellite images before and after the episode show sea‐ice concentrations decreasing from > 90% to ~50% over a large area affected by the air‐mass transformation. We argue that this rapid melt was triggered by the increased heat flux from the atmosphere due to the warm‐air advection.
Key Points
The importance of both large‐scale dynamics and local feedback for sea‐ice melt
The location of extra melt near the ice edge, due to the air‐mass transformation
The role of clouds, longwave radiation and turbulent heat flux for sea‐ice melt</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2015GL064373</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-6908-7410</orcidid><orcidid>https://orcid.org/0000-0002-0973-9982</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-8276 |
ispartof | Geophysical research letters, 2015-07, Vol.42 (13), p.5594-5602 |
issn | 0094-8276 1944-8007 1944-8007 |
language | eng |
recordid | cdi_swepub_primary_oai_DiVA_org_su_120094 |
source | Wiley Online Library AGU 2016 |
subjects | Advection Aerodynamics Air masses Air temperature Arctic Area atmosfärvetenskap och oceanografi Atmosphere Atmospheric Sciences and Oceanography Energy Energy flux Energy transfer Fluctuations Fluid dynamics Fog Heat Heat flux Heat transfer Ice formation Ice melting Long wave radiation Marine Melting Melts Radiation Satellite imagery Satellites Sea ice Sea ice concentrations sea-ice melt Solar radiation Surface energy surface energy balance surface inversion Surface properties Surface temperature Temperature Temperature effects Temperature inversion Temperature inversions Transformations Turbulence Turbulent heat flux warm-air advection |
title | Warm-air advection, air mass transformation and fog causes rapid ice melt |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T11%3A24%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Warm-air%20advection,%20air%20mass%20transformation%20and%20fog%20causes%20rapid%20ice%20melt&rft.jtitle=Geophysical%20research%20letters&rft.au=Tjernstr%C3%B6m,%20Michael&rft.date=2015-07-16&rft.volume=42&rft.issue=13&rft.spage=5594&rft.epage=5602&rft.pages=5594-5602&rft.issn=0094-8276&rft.eissn=1944-8007&rft_id=info:doi/10.1002/2015GL064373&rft_dat=%3Cproquest_swepu%3E3760509401%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c6922-a82039de20d0190306f6d0663bba80345c330005edb72f510dc22f463052919f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1699324173&rft_id=info:pmid/&rfr_iscdi=true |