Loading…

Warm-air advection, air mass transformation and fog causes rapid ice melt

Direct observations during intense warm‐air advection over the East Siberian Sea reveal a period of rapid sea‐ice melt. A semistationary, high‐pressure system north of the Bering Strait forced northward advection of warm, moist air from the continent. Air‐mass transformation over melting sea ice for...

Full description

Saved in:
Bibliographic Details
Published in:Geophysical research letters 2015-07, Vol.42 (13), p.5594-5602
Main Authors: Tjernström, Michael, Shupe, Matthew D., Brooks, Ian M., Persson, P. Ola G., Prytherch, John, Salisbury, Dominic J., Sedlar, Joseph, Achtert, Peggy, Brooks, Barbara J., Johnston, Paul E., Sotiropoulou, Georgia, Wolfe, Dan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c6922-a82039de20d0190306f6d0663bba80345c330005edb72f510dc22f463052919f3
cites cdi_FETCH-LOGICAL-c6922-a82039de20d0190306f6d0663bba80345c330005edb72f510dc22f463052919f3
container_end_page 5602
container_issue 13
container_start_page 5594
container_title Geophysical research letters
container_volume 42
creator Tjernström, Michael
Shupe, Matthew D.
Brooks, Ian M.
Persson, P. Ola G.
Prytherch, John
Salisbury, Dominic J.
Sedlar, Joseph
Achtert, Peggy
Brooks, Barbara J.
Johnston, Paul E.
Sotiropoulou, Georgia
Wolfe, Dan
description Direct observations during intense warm‐air advection over the East Siberian Sea reveal a period of rapid sea‐ice melt. A semistationary, high‐pressure system north of the Bering Strait forced northward advection of warm, moist air from the continent. Air‐mass transformation over melting sea ice formed a strong, surface‐based temperature inversion in which dense fog formed. This induced a positive net longwave radiation at the surface while reducing net solar radiation only marginally; the inversion also resulted in downward turbulent heat flux. The sum of these processes enhanced the surface energy flux by an average of ~15 W m−2 for a week. Satellite images before and after the episode show sea‐ice concentrations decreasing from > 90% to ~50% over a large area affected by the air‐mass transformation. We argue that this rapid melt was triggered by the increased heat flux from the atmosphere due to the warm‐air advection. Key Points The importance of both large‐scale dynamics and local feedback for sea‐ice melt The location of extra melt near the ice edge, due to the air‐mass transformation The role of clouds, longwave radiation and turbulent heat flux for sea‐ice melt
doi_str_mv 10.1002/2015GL064373
format article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_su_120094</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3760509401</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6922-a82039de20d0190306f6d0663bba80345c330005edb72f510dc22f463052919f3</originalsourceid><addsrcrecordid>eNqFkcFu1DAQhi1UJLalNx7AUi89NDD2OHZ8bAuklVagboEeLW_iVC5JvNgJpW-PV4tKxaGcPNZ8_2g-DSFvGLxlAPwdB1bWS5ACFb4gC6aFKCoAtUcWADrXXMlXZD-lOwBAQLYglzc2DoX1kdr2p2smH8YTuv0ONiU6RTumLsTBbhvUji3twi1t7JxcotFufEt94-jg-uk1ednZPrnDP-8B-frxw5fzi2L5ub48P10WjdScF7bigLp1HFpgOm8hO9mClLhe2wpQlA1i3q507VrxrmTQNpx3QiKUXDPd4QE52c1N924zr80m-sHGBxOsN-_9t1MT4q1Js2F865zx4x2-ieHH7NJkBp8a1_d2dGFOhlVQodRCV_9HFau0ElqojB79g96FOY7Z2zDNIHuprPkcJbVGLpjCv0JNDClF1z0qMTDbu5qnd8043-H3vncPz7KmXi1LZMBzqNiFfJrcr8eQjd-NVKhKc_OpNquL1dVZfV2Za_wNS4muOA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1699324173</pqid></control><display><type>article</type><title>Warm-air advection, air mass transformation and fog causes rapid ice melt</title><source>Wiley Online Library AGU 2016</source><creator>Tjernström, Michael ; Shupe, Matthew D. ; Brooks, Ian M. ; Persson, P. Ola G. ; Prytherch, John ; Salisbury, Dominic J. ; Sedlar, Joseph ; Achtert, Peggy ; Brooks, Barbara J. ; Johnston, Paul E. ; Sotiropoulou, Georgia ; Wolfe, Dan</creator><creatorcontrib>Tjernström, Michael ; Shupe, Matthew D. ; Brooks, Ian M. ; Persson, P. Ola G. ; Prytherch, John ; Salisbury, Dominic J. ; Sedlar, Joseph ; Achtert, Peggy ; Brooks, Barbara J. ; Johnston, Paul E. ; Sotiropoulou, Georgia ; Wolfe, Dan</creatorcontrib><description>Direct observations during intense warm‐air advection over the East Siberian Sea reveal a period of rapid sea‐ice melt. A semistationary, high‐pressure system north of the Bering Strait forced northward advection of warm, moist air from the continent. Air‐mass transformation over melting sea ice formed a strong, surface‐based temperature inversion in which dense fog formed. This induced a positive net longwave radiation at the surface while reducing net solar radiation only marginally; the inversion also resulted in downward turbulent heat flux. The sum of these processes enhanced the surface energy flux by an average of ~15 W m−2 for a week. Satellite images before and after the episode show sea‐ice concentrations decreasing from &gt; 90% to ~50% over a large area affected by the air‐mass transformation. We argue that this rapid melt was triggered by the increased heat flux from the atmosphere due to the warm‐air advection. Key Points The importance of both large‐scale dynamics and local feedback for sea‐ice melt The location of extra melt near the ice edge, due to the air‐mass transformation The role of clouds, longwave radiation and turbulent heat flux for sea‐ice melt</description><identifier>ISSN: 0094-8276</identifier><identifier>ISSN: 1944-8007</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1002/2015GL064373</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Advection ; Aerodynamics ; Air masses ; Air temperature ; Arctic ; Area ; atmosfärvetenskap och oceanografi ; Atmosphere ; Atmospheric Sciences and Oceanography ; Energy ; Energy flux ; Energy transfer ; Fluctuations ; Fluid dynamics ; Fog ; Heat ; Heat flux ; Heat transfer ; Ice formation ; Ice melting ; Long wave radiation ; Marine ; Melting ; Melts ; Radiation ; Satellite imagery ; Satellites ; Sea ice ; Sea ice concentrations ; sea-ice melt ; Solar radiation ; Surface energy ; surface energy balance ; surface inversion ; Surface properties ; Surface temperature ; Temperature ; Temperature effects ; Temperature inversion ; Temperature inversions ; Transformations ; Turbulence ; Turbulent heat flux ; warm-air advection</subject><ispartof>Geophysical research letters, 2015-07, Vol.42 (13), p.5594-5602</ispartof><rights>2015. The Authors.</rights><rights>2015. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6922-a82039de20d0190306f6d0663bba80345c330005edb72f510dc22f463052919f3</citedby><cites>FETCH-LOGICAL-c6922-a82039de20d0190306f6d0663bba80345c330005edb72f510dc22f463052919f3</cites><orcidid>0000-0002-6908-7410 ; 0000-0002-0973-9982</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2015GL064373$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2015GL064373$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,11514,27924,27925,46468,46892</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-120094$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Tjernström, Michael</creatorcontrib><creatorcontrib>Shupe, Matthew D.</creatorcontrib><creatorcontrib>Brooks, Ian M.</creatorcontrib><creatorcontrib>Persson, P. Ola G.</creatorcontrib><creatorcontrib>Prytherch, John</creatorcontrib><creatorcontrib>Salisbury, Dominic J.</creatorcontrib><creatorcontrib>Sedlar, Joseph</creatorcontrib><creatorcontrib>Achtert, Peggy</creatorcontrib><creatorcontrib>Brooks, Barbara J.</creatorcontrib><creatorcontrib>Johnston, Paul E.</creatorcontrib><creatorcontrib>Sotiropoulou, Georgia</creatorcontrib><creatorcontrib>Wolfe, Dan</creatorcontrib><title>Warm-air advection, air mass transformation and fog causes rapid ice melt</title><title>Geophysical research letters</title><addtitle>Geophys. Res. Lett</addtitle><description>Direct observations during intense warm‐air advection over the East Siberian Sea reveal a period of rapid sea‐ice melt. A semistationary, high‐pressure system north of the Bering Strait forced northward advection of warm, moist air from the continent. Air‐mass transformation over melting sea ice formed a strong, surface‐based temperature inversion in which dense fog formed. This induced a positive net longwave radiation at the surface while reducing net solar radiation only marginally; the inversion also resulted in downward turbulent heat flux. The sum of these processes enhanced the surface energy flux by an average of ~15 W m−2 for a week. Satellite images before and after the episode show sea‐ice concentrations decreasing from &gt; 90% to ~50% over a large area affected by the air‐mass transformation. We argue that this rapid melt was triggered by the increased heat flux from the atmosphere due to the warm‐air advection. Key Points The importance of both large‐scale dynamics and local feedback for sea‐ice melt The location of extra melt near the ice edge, due to the air‐mass transformation The role of clouds, longwave radiation and turbulent heat flux for sea‐ice melt</description><subject>Advection</subject><subject>Aerodynamics</subject><subject>Air masses</subject><subject>Air temperature</subject><subject>Arctic</subject><subject>Area</subject><subject>atmosfärvetenskap och oceanografi</subject><subject>Atmosphere</subject><subject>Atmospheric Sciences and Oceanography</subject><subject>Energy</subject><subject>Energy flux</subject><subject>Energy transfer</subject><subject>Fluctuations</subject><subject>Fluid dynamics</subject><subject>Fog</subject><subject>Heat</subject><subject>Heat flux</subject><subject>Heat transfer</subject><subject>Ice formation</subject><subject>Ice melting</subject><subject>Long wave radiation</subject><subject>Marine</subject><subject>Melting</subject><subject>Melts</subject><subject>Radiation</subject><subject>Satellite imagery</subject><subject>Satellites</subject><subject>Sea ice</subject><subject>Sea ice concentrations</subject><subject>sea-ice melt</subject><subject>Solar radiation</subject><subject>Surface energy</subject><subject>surface energy balance</subject><subject>surface inversion</subject><subject>Surface properties</subject><subject>Surface temperature</subject><subject>Temperature</subject><subject>Temperature effects</subject><subject>Temperature inversion</subject><subject>Temperature inversions</subject><subject>Transformations</subject><subject>Turbulence</subject><subject>Turbulent heat flux</subject><subject>warm-air advection</subject><issn>0094-8276</issn><issn>1944-8007</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkcFu1DAQhi1UJLalNx7AUi89NDD2OHZ8bAuklVagboEeLW_iVC5JvNgJpW-PV4tKxaGcPNZ8_2g-DSFvGLxlAPwdB1bWS5ACFb4gC6aFKCoAtUcWADrXXMlXZD-lOwBAQLYglzc2DoX1kdr2p2smH8YTuv0ONiU6RTumLsTBbhvUji3twi1t7JxcotFufEt94-jg-uk1ednZPrnDP-8B-frxw5fzi2L5ub48P10WjdScF7bigLp1HFpgOm8hO9mClLhe2wpQlA1i3q507VrxrmTQNpx3QiKUXDPd4QE52c1N924zr80m-sHGBxOsN-_9t1MT4q1Js2F865zx4x2-ieHH7NJkBp8a1_d2dGFOhlVQodRCV_9HFau0ElqojB79g96FOY7Z2zDNIHuprPkcJbVGLpjCv0JNDClF1z0qMTDbu5qnd8043-H3vncPz7KmXi1LZMBzqNiFfJrcr8eQjd-NVKhKc_OpNquL1dVZfV2Za_wNS4muOA</recordid><startdate>20150716</startdate><enddate>20150716</enddate><creator>Tjernström, Michael</creator><creator>Shupe, Matthew D.</creator><creator>Brooks, Ian M.</creator><creator>Persson, P. Ola G.</creator><creator>Prytherch, John</creator><creator>Salisbury, Dominic J.</creator><creator>Sedlar, Joseph</creator><creator>Achtert, Peggy</creator><creator>Brooks, Barbara J.</creator><creator>Johnston, Paul E.</creator><creator>Sotiropoulou, Georgia</creator><creator>Wolfe, Dan</creator><general>Blackwell Publishing Ltd</general><general>John Wiley &amp; Sons, Inc</general><scope>BSCLL</scope><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>7UA</scope><scope>C1K</scope><scope>ABAVF</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>DG7</scope><scope>ZZAVC</scope><orcidid>https://orcid.org/0000-0002-6908-7410</orcidid><orcidid>https://orcid.org/0000-0002-0973-9982</orcidid></search><sort><creationdate>20150716</creationdate><title>Warm-air advection, air mass transformation and fog causes rapid ice melt</title><author>Tjernström, Michael ; Shupe, Matthew D. ; Brooks, Ian M. ; Persson, P. Ola G. ; Prytherch, John ; Salisbury, Dominic J. ; Sedlar, Joseph ; Achtert, Peggy ; Brooks, Barbara J. ; Johnston, Paul E. ; Sotiropoulou, Georgia ; Wolfe, Dan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6922-a82039de20d0190306f6d0663bba80345c330005edb72f510dc22f463052919f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Advection</topic><topic>Aerodynamics</topic><topic>Air masses</topic><topic>Air temperature</topic><topic>Arctic</topic><topic>Area</topic><topic>atmosfärvetenskap och oceanografi</topic><topic>Atmosphere</topic><topic>Atmospheric Sciences and Oceanography</topic><topic>Energy</topic><topic>Energy flux</topic><topic>Energy transfer</topic><topic>Fluctuations</topic><topic>Fluid dynamics</topic><topic>Fog</topic><topic>Heat</topic><topic>Heat flux</topic><topic>Heat transfer</topic><topic>Ice formation</topic><topic>Ice melting</topic><topic>Long wave radiation</topic><topic>Marine</topic><topic>Melting</topic><topic>Melts</topic><topic>Radiation</topic><topic>Satellite imagery</topic><topic>Satellites</topic><topic>Sea ice</topic><topic>Sea ice concentrations</topic><topic>sea-ice melt</topic><topic>Solar radiation</topic><topic>Surface energy</topic><topic>surface energy balance</topic><topic>surface inversion</topic><topic>Surface properties</topic><topic>Surface temperature</topic><topic>Temperature</topic><topic>Temperature effects</topic><topic>Temperature inversion</topic><topic>Temperature inversions</topic><topic>Transformations</topic><topic>Turbulence</topic><topic>Turbulent heat flux</topic><topic>warm-air advection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tjernström, Michael</creatorcontrib><creatorcontrib>Shupe, Matthew D.</creatorcontrib><creatorcontrib>Brooks, Ian M.</creatorcontrib><creatorcontrib>Persson, P. Ola G.</creatorcontrib><creatorcontrib>Prytherch, John</creatorcontrib><creatorcontrib>Salisbury, Dominic J.</creatorcontrib><creatorcontrib>Sedlar, Joseph</creatorcontrib><creatorcontrib>Achtert, Peggy</creatorcontrib><creatorcontrib>Brooks, Barbara J.</creatorcontrib><creatorcontrib>Johnston, Paul E.</creatorcontrib><creatorcontrib>Sotiropoulou, Georgia</creatorcontrib><creatorcontrib>Wolfe, Dan</creatorcontrib><collection>Istex</collection><collection>Wiley_OA刊</collection><collection>Wiley Online Library Free Content</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>SWEPUB Stockholms universitet full text</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Stockholms universitet</collection><collection>SwePub Articles full text</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tjernström, Michael</au><au>Shupe, Matthew D.</au><au>Brooks, Ian M.</au><au>Persson, P. Ola G.</au><au>Prytherch, John</au><au>Salisbury, Dominic J.</au><au>Sedlar, Joseph</au><au>Achtert, Peggy</au><au>Brooks, Barbara J.</au><au>Johnston, Paul E.</au><au>Sotiropoulou, Georgia</au><au>Wolfe, Dan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Warm-air advection, air mass transformation and fog causes rapid ice melt</atitle><jtitle>Geophysical research letters</jtitle><addtitle>Geophys. Res. Lett</addtitle><date>2015-07-16</date><risdate>2015</risdate><volume>42</volume><issue>13</issue><spage>5594</spage><epage>5602</epage><pages>5594-5602</pages><issn>0094-8276</issn><issn>1944-8007</issn><eissn>1944-8007</eissn><abstract>Direct observations during intense warm‐air advection over the East Siberian Sea reveal a period of rapid sea‐ice melt. A semistationary, high‐pressure system north of the Bering Strait forced northward advection of warm, moist air from the continent. Air‐mass transformation over melting sea ice formed a strong, surface‐based temperature inversion in which dense fog formed. This induced a positive net longwave radiation at the surface while reducing net solar radiation only marginally; the inversion also resulted in downward turbulent heat flux. The sum of these processes enhanced the surface energy flux by an average of ~15 W m−2 for a week. Satellite images before and after the episode show sea‐ice concentrations decreasing from &gt; 90% to ~50% over a large area affected by the air‐mass transformation. We argue that this rapid melt was triggered by the increased heat flux from the atmosphere due to the warm‐air advection. Key Points The importance of both large‐scale dynamics and local feedback for sea‐ice melt The location of extra melt near the ice edge, due to the air‐mass transformation The role of clouds, longwave radiation and turbulent heat flux for sea‐ice melt</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2015GL064373</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-6908-7410</orcidid><orcidid>https://orcid.org/0000-0002-0973-9982</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-8276
ispartof Geophysical research letters, 2015-07, Vol.42 (13), p.5594-5602
issn 0094-8276
1944-8007
1944-8007
language eng
recordid cdi_swepub_primary_oai_DiVA_org_su_120094
source Wiley Online Library AGU 2016
subjects Advection
Aerodynamics
Air masses
Air temperature
Arctic
Area
atmosfärvetenskap och oceanografi
Atmosphere
Atmospheric Sciences and Oceanography
Energy
Energy flux
Energy transfer
Fluctuations
Fluid dynamics
Fog
Heat
Heat flux
Heat transfer
Ice formation
Ice melting
Long wave radiation
Marine
Melting
Melts
Radiation
Satellite imagery
Satellites
Sea ice
Sea ice concentrations
sea-ice melt
Solar radiation
Surface energy
surface energy balance
surface inversion
Surface properties
Surface temperature
Temperature
Temperature effects
Temperature inversion
Temperature inversions
Transformations
Turbulence
Turbulent heat flux
warm-air advection
title Warm-air advection, air mass transformation and fog causes rapid ice melt
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T11%3A24%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Warm-air%20advection,%20air%20mass%20transformation%20and%20fog%20causes%20rapid%20ice%20melt&rft.jtitle=Geophysical%20research%20letters&rft.au=Tjernstr%C3%B6m,%20Michael&rft.date=2015-07-16&rft.volume=42&rft.issue=13&rft.spage=5594&rft.epage=5602&rft.pages=5594-5602&rft.issn=0094-8276&rft.eissn=1944-8007&rft_id=info:doi/10.1002/2015GL064373&rft_dat=%3Cproquest_swepu%3E3760509401%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c6922-a82039de20d0190306f6d0663bba80345c330005edb72f510dc22f463052919f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1699324173&rft_id=info:pmid/&rfr_iscdi=true