Loading…
Modeling neural activity with cumulative damage distributions
Neurons transmit information as action potentials or spikes. Due to the inherent randomness of the inter-spike intervals (ISIs), probabilistic models are often used for their description. Cumulative damage (CD) distributions are a family of probabilistic models that has been widely considered for de...
Saved in:
Published in: | Biological cybernetics 2015-10, Vol.109 (4-5), p.421-433 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c508t-d13f46f26c1f8caafcef7b2be5e4dd582000a70a1517ec17fac4c5227de0c93a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c508t-d13f46f26c1f8caafcef7b2be5e4dd582000a70a1517ec17fac4c5227de0c93a3 |
container_end_page | 433 |
container_issue | 4-5 |
container_start_page | 421 |
container_title | Biological cybernetics |
container_volume | 109 |
creator | Leiva, Víctor Tejo, Mauricio Guiraud, Pierre Schmachtenberg, Oliver Orio, Patricio Marmolejo-Ramos, Fernando |
description | Neurons transmit information as action potentials or spikes. Due to the inherent randomness of the inter-spike intervals (ISIs), probabilistic models are often used for their description. Cumulative damage (CD) distributions are a family of probabilistic models that has been widely considered for describing time-related cumulative processes. This family allows us to consider certain deterministic principles for modeling ISIs from a probabilistic viewpoint and to link its parameters to values with biological interpretation. The CD family includes the Birnbaum–Saunders and inverse Gaussian distributions, which possess distinctive properties and theoretical arguments useful for ISI description. We expand the use of CD distributions to the modeling of neural spiking behavior, mainly by testing the suitability of the Birnbaum–Saunders distribution, which has not been studied in the setting of neural activity. We validate this expansion with original experimental and simulated electrophysiological data. |
doi_str_mv | 10.1007/s00422-015-0651-9 |
format | article |
fullrecord | <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_su_122268</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3808851191</sourcerecordid><originalsourceid>FETCH-LOGICAL-c508t-d13f46f26c1f8caafcef7b2be5e4dd582000a70a1517ec17fac4c5227de0c93a3</originalsourceid><addsrcrecordid>eNqNkU1v1DAQhi0EosuWH8AFReLCgZQZf8TxgUPVlg-piEvbq-U4zuJVPhY7puq_r1dZKoSEtJcZafzMO555CXmDcIYA8mME4JSWgKKESmCpnpEVcpYrUsJzsgLGoUQKcEJexbgFAEWFeklOclQ1RViRT9-n1vV-3BSjS8H0hbGz_-3nh-Lezz8Lm4bUm1xxRWsGs8nJxzn4Js1-GuMpedGZPrrXh7wmt5-vbi6-ltc_vny7OL8urYB6LltkHa86WlnsamtMZ10nG9o44Xjbijr_EIwEgwKlsyg7Y7kVlMrWgVXMsDX5sOjGe7dLjd4FP5jwoCfj9aW_O9dT2OiYNFJKqzrj7xd8F6ZfycVZDz5a1_dmdFOKGmVFQXFW4RGoYFxUQhyDIlNcMlZl9N0_6HZKYcwn2lNUUq6y7prgQtkwxRhc97QXgt4brBeDdTZY7w3WKve8PSinZnDtU8cfRzNAD6fKT-PGhb9G_1f1EVKlr14</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1712724975</pqid></control><display><type>article</type><title>Modeling neural activity with cumulative damage distributions</title><source>Springer Nature</source><creator>Leiva, Víctor ; Tejo, Mauricio ; Guiraud, Pierre ; Schmachtenberg, Oliver ; Orio, Patricio ; Marmolejo-Ramos, Fernando</creator><creatorcontrib>Leiva, Víctor ; Tejo, Mauricio ; Guiraud, Pierre ; Schmachtenberg, Oliver ; Orio, Patricio ; Marmolejo-Ramos, Fernando</creatorcontrib><description>Neurons transmit information as action potentials or spikes. Due to the inherent randomness of the inter-spike intervals (ISIs), probabilistic models are often used for their description. Cumulative damage (CD) distributions are a family of probabilistic models that has been widely considered for describing time-related cumulative processes. This family allows us to consider certain deterministic principles for modeling ISIs from a probabilistic viewpoint and to link its parameters to values with biological interpretation. The CD family includes the Birnbaum–Saunders and inverse Gaussian distributions, which possess distinctive properties and theoretical arguments useful for ISI description. We expand the use of CD distributions to the modeling of neural spiking behavior, mainly by testing the suitability of the Birnbaum–Saunders distribution, which has not been studied in the setting of neural activity. We validate this expansion with original experimental and simulated electrophysiological data.</description><identifier>ISSN: 0340-1200</identifier><identifier>ISSN: 1432-0770</identifier><identifier>EISSN: 1432-0770</identifier><identifier>DOI: 10.1007/s00422-015-0651-9</identifier><identifier>PMID: 25998210</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Action Potentials - physiology ; Animals ; Bioinformatics ; Biological ; Biomedical and Life Sciences ; Biomedicine ; Birnbaum-Saunders and inverse Gaussian distributions ; Complex Systems ; Computer Appl. in Life Sciences ; Computer Simulation ; Cumulative damage ; Cybernetics ; Female ; Humans ; Integrate-and-fire model ; Inter-spike intervals ; Inverse ; Male ; Mathematical models ; Maximum likelihood method ; Model selection and goodness of fit ; Models, Neurological ; Neurobiology ; Neurons ; Neurons - physiology ; Neurosciences ; Normal Distribution ; Original Paper ; Probabilistic methods ; Probability theory</subject><ispartof>Biological cybernetics, 2015-10, Vol.109 (4-5), p.421-433</ispartof><rights>Springer-Verlag Berlin Heidelberg 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c508t-d13f46f26c1f8caafcef7b2be5e4dd582000a70a1517ec17fac4c5227de0c93a3</citedby><cites>FETCH-LOGICAL-c508t-d13f46f26c1f8caafcef7b2be5e4dd582000a70a1517ec17fac4c5227de0c93a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25998210$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-122268$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Leiva, Víctor</creatorcontrib><creatorcontrib>Tejo, Mauricio</creatorcontrib><creatorcontrib>Guiraud, Pierre</creatorcontrib><creatorcontrib>Schmachtenberg, Oliver</creatorcontrib><creatorcontrib>Orio, Patricio</creatorcontrib><creatorcontrib>Marmolejo-Ramos, Fernando</creatorcontrib><title>Modeling neural activity with cumulative damage distributions</title><title>Biological cybernetics</title><addtitle>Biol Cybern</addtitle><addtitle>Biol Cybern</addtitle><description>Neurons transmit information as action potentials or spikes. Due to the inherent randomness of the inter-spike intervals (ISIs), probabilistic models are often used for their description. Cumulative damage (CD) distributions are a family of probabilistic models that has been widely considered for describing time-related cumulative processes. This family allows us to consider certain deterministic principles for modeling ISIs from a probabilistic viewpoint and to link its parameters to values with biological interpretation. The CD family includes the Birnbaum–Saunders and inverse Gaussian distributions, which possess distinctive properties and theoretical arguments useful for ISI description. We expand the use of CD distributions to the modeling of neural spiking behavior, mainly by testing the suitability of the Birnbaum–Saunders distribution, which has not been studied in the setting of neural activity. We validate this expansion with original experimental and simulated electrophysiological data.</description><subject>Action Potentials - physiology</subject><subject>Animals</subject><subject>Bioinformatics</subject><subject>Biological</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Birnbaum-Saunders and inverse Gaussian distributions</subject><subject>Complex Systems</subject><subject>Computer Appl. in Life Sciences</subject><subject>Computer Simulation</subject><subject>Cumulative damage</subject><subject>Cybernetics</subject><subject>Female</subject><subject>Humans</subject><subject>Integrate-and-fire model</subject><subject>Inter-spike intervals</subject><subject>Inverse</subject><subject>Male</subject><subject>Mathematical models</subject><subject>Maximum likelihood method</subject><subject>Model selection and goodness of fit</subject><subject>Models, Neurological</subject><subject>Neurobiology</subject><subject>Neurons</subject><subject>Neurons - physiology</subject><subject>Neurosciences</subject><subject>Normal Distribution</subject><subject>Original Paper</subject><subject>Probabilistic methods</subject><subject>Probability theory</subject><issn>0340-1200</issn><issn>1432-0770</issn><issn>1432-0770</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkU1v1DAQhi0EosuWH8AFReLCgZQZf8TxgUPVlg-piEvbq-U4zuJVPhY7puq_r1dZKoSEtJcZafzMO555CXmDcIYA8mME4JSWgKKESmCpnpEVcpYrUsJzsgLGoUQKcEJexbgFAEWFeklOclQ1RViRT9-n1vV-3BSjS8H0hbGz_-3nh-Lezz8Lm4bUm1xxRWsGs8nJxzn4Js1-GuMpedGZPrrXh7wmt5-vbi6-ltc_vny7OL8urYB6LltkHa86WlnsamtMZ10nG9o44Xjbijr_EIwEgwKlsyg7Y7kVlMrWgVXMsDX5sOjGe7dLjd4FP5jwoCfj9aW_O9dT2OiYNFJKqzrj7xd8F6ZfycVZDz5a1_dmdFOKGmVFQXFW4RGoYFxUQhyDIlNcMlZl9N0_6HZKYcwn2lNUUq6y7prgQtkwxRhc97QXgt4brBeDdTZY7w3WKve8PSinZnDtU8cfRzNAD6fKT-PGhb9G_1f1EVKlr14</recordid><startdate>20151001</startdate><enddate>20151001</enddate><creator>Leiva, Víctor</creator><creator>Tejo, Mauricio</creator><creator>Guiraud, Pierre</creator><creator>Schmachtenberg, Oliver</creator><creator>Orio, Patricio</creator><creator>Marmolejo-Ramos, Fernando</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>L7M</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>DG7</scope></search><sort><creationdate>20151001</creationdate><title>Modeling neural activity with cumulative damage distributions</title><author>Leiva, Víctor ; Tejo, Mauricio ; Guiraud, Pierre ; Schmachtenberg, Oliver ; Orio, Patricio ; Marmolejo-Ramos, Fernando</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c508t-d13f46f26c1f8caafcef7b2be5e4dd582000a70a1517ec17fac4c5227de0c93a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Action Potentials - physiology</topic><topic>Animals</topic><topic>Bioinformatics</topic><topic>Biological</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Birnbaum-Saunders and inverse Gaussian distributions</topic><topic>Complex Systems</topic><topic>Computer Appl. in Life Sciences</topic><topic>Computer Simulation</topic><topic>Cumulative damage</topic><topic>Cybernetics</topic><topic>Female</topic><topic>Humans</topic><topic>Integrate-and-fire model</topic><topic>Inter-spike intervals</topic><topic>Inverse</topic><topic>Male</topic><topic>Mathematical models</topic><topic>Maximum likelihood method</topic><topic>Model selection and goodness of fit</topic><topic>Models, Neurological</topic><topic>Neurobiology</topic><topic>Neurons</topic><topic>Neurons - physiology</topic><topic>Neurosciences</topic><topic>Normal Distribution</topic><topic>Original Paper</topic><topic>Probabilistic methods</topic><topic>Probability theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leiva, Víctor</creatorcontrib><creatorcontrib>Tejo, Mauricio</creatorcontrib><creatorcontrib>Guiraud, Pierre</creatorcontrib><creatorcontrib>Schmachtenberg, Oliver</creatorcontrib><creatorcontrib>Orio, Patricio</creatorcontrib><creatorcontrib>Marmolejo-Ramos, Fernando</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biological Sciences</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Science Journals (ProQuest Database)</collection><collection>Biological Science Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Stockholms universitet</collection><jtitle>Biological cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leiva, Víctor</au><au>Tejo, Mauricio</au><au>Guiraud, Pierre</au><au>Schmachtenberg, Oliver</au><au>Orio, Patricio</au><au>Marmolejo-Ramos, Fernando</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling neural activity with cumulative damage distributions</atitle><jtitle>Biological cybernetics</jtitle><stitle>Biol Cybern</stitle><addtitle>Biol Cybern</addtitle><date>2015-10-01</date><risdate>2015</risdate><volume>109</volume><issue>4-5</issue><spage>421</spage><epage>433</epage><pages>421-433</pages><issn>0340-1200</issn><issn>1432-0770</issn><eissn>1432-0770</eissn><abstract>Neurons transmit information as action potentials or spikes. Due to the inherent randomness of the inter-spike intervals (ISIs), probabilistic models are often used for their description. Cumulative damage (CD) distributions are a family of probabilistic models that has been widely considered for describing time-related cumulative processes. This family allows us to consider certain deterministic principles for modeling ISIs from a probabilistic viewpoint and to link its parameters to values with biological interpretation. The CD family includes the Birnbaum–Saunders and inverse Gaussian distributions, which possess distinctive properties and theoretical arguments useful for ISI description. We expand the use of CD distributions to the modeling of neural spiking behavior, mainly by testing the suitability of the Birnbaum–Saunders distribution, which has not been studied in the setting of neural activity. We validate this expansion with original experimental and simulated electrophysiological data.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>25998210</pmid><doi>10.1007/s00422-015-0651-9</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0340-1200 |
ispartof | Biological cybernetics, 2015-10, Vol.109 (4-5), p.421-433 |
issn | 0340-1200 1432-0770 1432-0770 |
language | eng |
recordid | cdi_swepub_primary_oai_DiVA_org_su_122268 |
source | Springer Nature |
subjects | Action Potentials - physiology Animals Bioinformatics Biological Biomedical and Life Sciences Biomedicine Birnbaum-Saunders and inverse Gaussian distributions Complex Systems Computer Appl. in Life Sciences Computer Simulation Cumulative damage Cybernetics Female Humans Integrate-and-fire model Inter-spike intervals Inverse Male Mathematical models Maximum likelihood method Model selection and goodness of fit Models, Neurological Neurobiology Neurons Neurons - physiology Neurosciences Normal Distribution Original Paper Probabilistic methods Probability theory |
title | Modeling neural activity with cumulative damage distributions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T10%3A13%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20neural%20activity%20with%20cumulative%20damage%20distributions&rft.jtitle=Biological%20cybernetics&rft.au=Leiva,%20V%C3%ADctor&rft.date=2015-10-01&rft.volume=109&rft.issue=4-5&rft.spage=421&rft.epage=433&rft.pages=421-433&rft.issn=0340-1200&rft.eissn=1432-0770&rft_id=info:doi/10.1007/s00422-015-0651-9&rft_dat=%3Cproquest_swepu%3E3808851191%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c508t-d13f46f26c1f8caafcef7b2be5e4dd582000a70a1517ec17fac4c5227de0c93a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1712724975&rft_id=info:pmid/25998210&rfr_iscdi=true |