Loading…

Modeling neural activity with cumulative damage distributions

Neurons transmit information as action potentials or spikes. Due to the inherent randomness of the inter-spike intervals (ISIs), probabilistic models are often used for their description. Cumulative damage (CD) distributions are a family of probabilistic models that has been widely considered for de...

Full description

Saved in:
Bibliographic Details
Published in:Biological cybernetics 2015-10, Vol.109 (4-5), p.421-433
Main Authors: Leiva, Víctor, Tejo, Mauricio, Guiraud, Pierre, Schmachtenberg, Oliver, Orio, Patricio, Marmolejo-Ramos, Fernando
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c508t-d13f46f26c1f8caafcef7b2be5e4dd582000a70a1517ec17fac4c5227de0c93a3
cites cdi_FETCH-LOGICAL-c508t-d13f46f26c1f8caafcef7b2be5e4dd582000a70a1517ec17fac4c5227de0c93a3
container_end_page 433
container_issue 4-5
container_start_page 421
container_title Biological cybernetics
container_volume 109
creator Leiva, Víctor
Tejo, Mauricio
Guiraud, Pierre
Schmachtenberg, Oliver
Orio, Patricio
Marmolejo-Ramos, Fernando
description Neurons transmit information as action potentials or spikes. Due to the inherent randomness of the inter-spike intervals (ISIs), probabilistic models are often used for their description. Cumulative damage (CD) distributions are a family of probabilistic models that has been widely considered for describing time-related cumulative processes. This family allows us to consider certain deterministic principles for modeling ISIs from a probabilistic viewpoint and to link its parameters to values with biological interpretation. The CD family includes the Birnbaum–Saunders and inverse Gaussian distributions, which possess distinctive properties and theoretical arguments useful for ISI description. We expand the use of CD distributions to the modeling of neural spiking behavior, mainly by testing the suitability of the Birnbaum–Saunders distribution, which has not been studied in the setting of neural activity. We validate this expansion with original experimental and simulated electrophysiological data.
doi_str_mv 10.1007/s00422-015-0651-9
format article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_su_122268</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3808851191</sourcerecordid><originalsourceid>FETCH-LOGICAL-c508t-d13f46f26c1f8caafcef7b2be5e4dd582000a70a1517ec17fac4c5227de0c93a3</originalsourceid><addsrcrecordid>eNqNkU1v1DAQhi0EosuWH8AFReLCgZQZf8TxgUPVlg-piEvbq-U4zuJVPhY7puq_r1dZKoSEtJcZafzMO555CXmDcIYA8mME4JSWgKKESmCpnpEVcpYrUsJzsgLGoUQKcEJexbgFAEWFeklOclQ1RViRT9-n1vV-3BSjS8H0hbGz_-3nh-Lezz8Lm4bUm1xxRWsGs8nJxzn4Js1-GuMpedGZPrrXh7wmt5-vbi6-ltc_vny7OL8urYB6LltkHa86WlnsamtMZ10nG9o44Xjbijr_EIwEgwKlsyg7Y7kVlMrWgVXMsDX5sOjGe7dLjd4FP5jwoCfj9aW_O9dT2OiYNFJKqzrj7xd8F6ZfycVZDz5a1_dmdFOKGmVFQXFW4RGoYFxUQhyDIlNcMlZl9N0_6HZKYcwn2lNUUq6y7prgQtkwxRhc97QXgt4brBeDdTZY7w3WKve8PSinZnDtU8cfRzNAD6fKT-PGhb9G_1f1EVKlr14</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1712724975</pqid></control><display><type>article</type><title>Modeling neural activity with cumulative damage distributions</title><source>Springer Nature</source><creator>Leiva, Víctor ; Tejo, Mauricio ; Guiraud, Pierre ; Schmachtenberg, Oliver ; Orio, Patricio ; Marmolejo-Ramos, Fernando</creator><creatorcontrib>Leiva, Víctor ; Tejo, Mauricio ; Guiraud, Pierre ; Schmachtenberg, Oliver ; Orio, Patricio ; Marmolejo-Ramos, Fernando</creatorcontrib><description>Neurons transmit information as action potentials or spikes. Due to the inherent randomness of the inter-spike intervals (ISIs), probabilistic models are often used for their description. Cumulative damage (CD) distributions are a family of probabilistic models that has been widely considered for describing time-related cumulative processes. This family allows us to consider certain deterministic principles for modeling ISIs from a probabilistic viewpoint and to link its parameters to values with biological interpretation. The CD family includes the Birnbaum–Saunders and inverse Gaussian distributions, which possess distinctive properties and theoretical arguments useful for ISI description. We expand the use of CD distributions to the modeling of neural spiking behavior, mainly by testing the suitability of the Birnbaum–Saunders distribution, which has not been studied in the setting of neural activity. We validate this expansion with original experimental and simulated electrophysiological data.</description><identifier>ISSN: 0340-1200</identifier><identifier>ISSN: 1432-0770</identifier><identifier>EISSN: 1432-0770</identifier><identifier>DOI: 10.1007/s00422-015-0651-9</identifier><identifier>PMID: 25998210</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Action Potentials - physiology ; Animals ; Bioinformatics ; Biological ; Biomedical and Life Sciences ; Biomedicine ; Birnbaum-Saunders and inverse Gaussian distributions ; Complex Systems ; Computer Appl. in Life Sciences ; Computer Simulation ; Cumulative damage ; Cybernetics ; Female ; Humans ; Integrate-and-fire model ; Inter-spike intervals ; Inverse ; Male ; Mathematical models ; Maximum likelihood method ; Model selection and goodness of fit ; Models, Neurological ; Neurobiology ; Neurons ; Neurons - physiology ; Neurosciences ; Normal Distribution ; Original Paper ; Probabilistic methods ; Probability theory</subject><ispartof>Biological cybernetics, 2015-10, Vol.109 (4-5), p.421-433</ispartof><rights>Springer-Verlag Berlin Heidelberg 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c508t-d13f46f26c1f8caafcef7b2be5e4dd582000a70a1517ec17fac4c5227de0c93a3</citedby><cites>FETCH-LOGICAL-c508t-d13f46f26c1f8caafcef7b2be5e4dd582000a70a1517ec17fac4c5227de0c93a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25998210$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-122268$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Leiva, Víctor</creatorcontrib><creatorcontrib>Tejo, Mauricio</creatorcontrib><creatorcontrib>Guiraud, Pierre</creatorcontrib><creatorcontrib>Schmachtenberg, Oliver</creatorcontrib><creatorcontrib>Orio, Patricio</creatorcontrib><creatorcontrib>Marmolejo-Ramos, Fernando</creatorcontrib><title>Modeling neural activity with cumulative damage distributions</title><title>Biological cybernetics</title><addtitle>Biol Cybern</addtitle><addtitle>Biol Cybern</addtitle><description>Neurons transmit information as action potentials or spikes. Due to the inherent randomness of the inter-spike intervals (ISIs), probabilistic models are often used for their description. Cumulative damage (CD) distributions are a family of probabilistic models that has been widely considered for describing time-related cumulative processes. This family allows us to consider certain deterministic principles for modeling ISIs from a probabilistic viewpoint and to link its parameters to values with biological interpretation. The CD family includes the Birnbaum–Saunders and inverse Gaussian distributions, which possess distinctive properties and theoretical arguments useful for ISI description. We expand the use of CD distributions to the modeling of neural spiking behavior, mainly by testing the suitability of the Birnbaum–Saunders distribution, which has not been studied in the setting of neural activity. We validate this expansion with original experimental and simulated electrophysiological data.</description><subject>Action Potentials - physiology</subject><subject>Animals</subject><subject>Bioinformatics</subject><subject>Biological</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Birnbaum-Saunders and inverse Gaussian distributions</subject><subject>Complex Systems</subject><subject>Computer Appl. in Life Sciences</subject><subject>Computer Simulation</subject><subject>Cumulative damage</subject><subject>Cybernetics</subject><subject>Female</subject><subject>Humans</subject><subject>Integrate-and-fire model</subject><subject>Inter-spike intervals</subject><subject>Inverse</subject><subject>Male</subject><subject>Mathematical models</subject><subject>Maximum likelihood method</subject><subject>Model selection and goodness of fit</subject><subject>Models, Neurological</subject><subject>Neurobiology</subject><subject>Neurons</subject><subject>Neurons - physiology</subject><subject>Neurosciences</subject><subject>Normal Distribution</subject><subject>Original Paper</subject><subject>Probabilistic methods</subject><subject>Probability theory</subject><issn>0340-1200</issn><issn>1432-0770</issn><issn>1432-0770</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkU1v1DAQhi0EosuWH8AFReLCgZQZf8TxgUPVlg-piEvbq-U4zuJVPhY7puq_r1dZKoSEtJcZafzMO555CXmDcIYA8mME4JSWgKKESmCpnpEVcpYrUsJzsgLGoUQKcEJexbgFAEWFeklOclQ1RViRT9-n1vV-3BSjS8H0hbGz_-3nh-Lezz8Lm4bUm1xxRWsGs8nJxzn4Js1-GuMpedGZPrrXh7wmt5-vbi6-ltc_vny7OL8urYB6LltkHa86WlnsamtMZ10nG9o44Xjbijr_EIwEgwKlsyg7Y7kVlMrWgVXMsDX5sOjGe7dLjd4FP5jwoCfj9aW_O9dT2OiYNFJKqzrj7xd8F6ZfycVZDz5a1_dmdFOKGmVFQXFW4RGoYFxUQhyDIlNcMlZl9N0_6HZKYcwn2lNUUq6y7prgQtkwxRhc97QXgt4brBeDdTZY7w3WKve8PSinZnDtU8cfRzNAD6fKT-PGhb9G_1f1EVKlr14</recordid><startdate>20151001</startdate><enddate>20151001</enddate><creator>Leiva, Víctor</creator><creator>Tejo, Mauricio</creator><creator>Guiraud, Pierre</creator><creator>Schmachtenberg, Oliver</creator><creator>Orio, Patricio</creator><creator>Marmolejo-Ramos, Fernando</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>L7M</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>DG7</scope></search><sort><creationdate>20151001</creationdate><title>Modeling neural activity with cumulative damage distributions</title><author>Leiva, Víctor ; Tejo, Mauricio ; Guiraud, Pierre ; Schmachtenberg, Oliver ; Orio, Patricio ; Marmolejo-Ramos, Fernando</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c508t-d13f46f26c1f8caafcef7b2be5e4dd582000a70a1517ec17fac4c5227de0c93a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Action Potentials - physiology</topic><topic>Animals</topic><topic>Bioinformatics</topic><topic>Biological</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Birnbaum-Saunders and inverse Gaussian distributions</topic><topic>Complex Systems</topic><topic>Computer Appl. in Life Sciences</topic><topic>Computer Simulation</topic><topic>Cumulative damage</topic><topic>Cybernetics</topic><topic>Female</topic><topic>Humans</topic><topic>Integrate-and-fire model</topic><topic>Inter-spike intervals</topic><topic>Inverse</topic><topic>Male</topic><topic>Mathematical models</topic><topic>Maximum likelihood method</topic><topic>Model selection and goodness of fit</topic><topic>Models, Neurological</topic><topic>Neurobiology</topic><topic>Neurons</topic><topic>Neurons - physiology</topic><topic>Neurosciences</topic><topic>Normal Distribution</topic><topic>Original Paper</topic><topic>Probabilistic methods</topic><topic>Probability theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leiva, Víctor</creatorcontrib><creatorcontrib>Tejo, Mauricio</creatorcontrib><creatorcontrib>Guiraud, Pierre</creatorcontrib><creatorcontrib>Schmachtenberg, Oliver</creatorcontrib><creatorcontrib>Orio, Patricio</creatorcontrib><creatorcontrib>Marmolejo-Ramos, Fernando</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biological Sciences</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Science Journals (ProQuest Database)</collection><collection>Biological Science Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Stockholms universitet</collection><jtitle>Biological cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leiva, Víctor</au><au>Tejo, Mauricio</au><au>Guiraud, Pierre</au><au>Schmachtenberg, Oliver</au><au>Orio, Patricio</au><au>Marmolejo-Ramos, Fernando</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling neural activity with cumulative damage distributions</atitle><jtitle>Biological cybernetics</jtitle><stitle>Biol Cybern</stitle><addtitle>Biol Cybern</addtitle><date>2015-10-01</date><risdate>2015</risdate><volume>109</volume><issue>4-5</issue><spage>421</spage><epage>433</epage><pages>421-433</pages><issn>0340-1200</issn><issn>1432-0770</issn><eissn>1432-0770</eissn><abstract>Neurons transmit information as action potentials or spikes. Due to the inherent randomness of the inter-spike intervals (ISIs), probabilistic models are often used for their description. Cumulative damage (CD) distributions are a family of probabilistic models that has been widely considered for describing time-related cumulative processes. This family allows us to consider certain deterministic principles for modeling ISIs from a probabilistic viewpoint and to link its parameters to values with biological interpretation. The CD family includes the Birnbaum–Saunders and inverse Gaussian distributions, which possess distinctive properties and theoretical arguments useful for ISI description. We expand the use of CD distributions to the modeling of neural spiking behavior, mainly by testing the suitability of the Birnbaum–Saunders distribution, which has not been studied in the setting of neural activity. We validate this expansion with original experimental and simulated electrophysiological data.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>25998210</pmid><doi>10.1007/s00422-015-0651-9</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0340-1200
ispartof Biological cybernetics, 2015-10, Vol.109 (4-5), p.421-433
issn 0340-1200
1432-0770
1432-0770
language eng
recordid cdi_swepub_primary_oai_DiVA_org_su_122268
source Springer Nature
subjects Action Potentials - physiology
Animals
Bioinformatics
Biological
Biomedical and Life Sciences
Biomedicine
Birnbaum-Saunders and inverse Gaussian distributions
Complex Systems
Computer Appl. in Life Sciences
Computer Simulation
Cumulative damage
Cybernetics
Female
Humans
Integrate-and-fire model
Inter-spike intervals
Inverse
Male
Mathematical models
Maximum likelihood method
Model selection and goodness of fit
Models, Neurological
Neurobiology
Neurons
Neurons - physiology
Neurosciences
Normal Distribution
Original Paper
Probabilistic methods
Probability theory
title Modeling neural activity with cumulative damage distributions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T10%3A13%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20neural%20activity%20with%20cumulative%20damage%20distributions&rft.jtitle=Biological%20cybernetics&rft.au=Leiva,%20V%C3%ADctor&rft.date=2015-10-01&rft.volume=109&rft.issue=4-5&rft.spage=421&rft.epage=433&rft.pages=421-433&rft.issn=0340-1200&rft.eissn=1432-0770&rft_id=info:doi/10.1007/s00422-015-0651-9&rft_dat=%3Cproquest_swepu%3E3808851191%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c508t-d13f46f26c1f8caafcef7b2be5e4dd582000a70a1517ec17fac4c5227de0c93a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1712724975&rft_id=info:pmid/25998210&rfr_iscdi=true