Loading…
Neogene ice volume and ocean temperatures: Insights from infaunal foraminiferal Mg/Ca paleothermometry
Antarctic continental‐scale glaciation is generally assumed to have initiated at the Eocene‐Oligocene Transition, yet its subsequent evolution is poorly constrained. We reconstruct changes in bottom water temperature and global ice volume from 0 to 17 Ma using δ18O in conjunction with Mg/Ca records...
Saved in:
Published in: | Paleoceanography 2015-11, Vol.30 (11), p.1437-1454 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Antarctic continental‐scale glaciation is generally assumed to have initiated at the Eocene‐Oligocene Transition, yet its subsequent evolution is poorly constrained. We reconstruct changes in bottom water temperature and global ice volume from 0 to 17 Ma using δ18O in conjunction with Mg/Ca records of the infaunal benthic foraminifer, O. umbonatus from Ocean Drilling Program (ODP) Site 806 (equatorial Pacific; ~2500 m). Considering uncertainties in core top calibrations and sensitivity to seawater Mg/Ca (Mg/Ca)sw, we produce a range of Mg/Ca‐temperature‐Mg/Casw calibrations. Our favored exponential temperature calibration is Mg/Ca = 0.66 ± 0.08 × Mg/Casw0.27±0.06 × e(0.114±0.02 × BWT) and our favored linear temperature calibration is Mg/Ca = (1.21 ± 0.04 + 0.12 ± 0.004 × BWT (bottom water temperature)) × (Mg/Casw−0.003±0.02) (stated errors are 2 s.e.). The equations are obtained by comparing O. umbonatus Mg/Ca for a Paleocene‐Eocene section from Ocean Drilling Program (ODP) Site 690 (Weddell Sea) to δ18O temperatures, calculated assuming ice‐free conditions during this peak warmth period of the Cenozoic. This procedure suggests negligible effect of Mg/Casw on the Mg distribution coefficient (DMg). Application of the new equations to the Site 806 record leads to the suggestion that global ice volume was greater than today after the Middle Miocene Climate Transition (~14 Ma). ODP Site 806 bottom waters cooled and freshened as the Pacific zonal sea surface temperature gradient increased, and climate cooled through the Pliocene, prior to the Plio‐Pleistocene glaciation of the Northern Hemisphere. The records indicate a decoupling of deep water temperatures and global ice volume, demonstrating the importance of thresholds in the evolution of the Antarctic ice sheet.
Key Points
Foraminifer O. umbonatus Mg/Ca has low sensitivity to changing seawater Mg/Ca
Greater than modern ice volume followed Middle Miocene Climate Transition
Plio‐Pleistocene glaciation preceded by a change in Pacific Ocean overturning |
---|---|
ISSN: | 0883-8305 2572-4517 1944-9186 1944-9186 2572-4525 |
DOI: | 10.1002/2015PA002833 |