Loading…
Luminescent Nanocellulose Platform: From Controlled Graft Block Copolymerization to Biomarker Sensing
A strategy is devised for the conversion of cellulose nanofibrils (CNF) into fluorescently labeled probes involving the synthesis of CNF-based macroinitiators that initiate radical polymerization of methyl acrylate and acrylic acid N-hydroxysuccinimide ester producing a graft block copolymer modifie...
Saved in:
Published in: | Biomacromolecules 2016-03, Vol.17 (3), p.1101-1109 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a417t-b8f727c27645498bcdc4e20632292bd169d702f3db2345ca2b054e621f0aa52b3 |
---|---|
cites | cdi_FETCH-LOGICAL-a417t-b8f727c27645498bcdc4e20632292bd169d702f3db2345ca2b054e621f0aa52b3 |
container_end_page | 1109 |
container_issue | 3 |
container_start_page | 1101 |
container_title | Biomacromolecules |
container_volume | 17 |
creator | Navarro, Julien R. G. Wennmalm, Stefan Godfrey, Jamie Breitholtz, Magnus Edlund, Ulrica |
description | A strategy is devised for the conversion of cellulose nanofibrils (CNF) into fluorescently labeled probes involving the synthesis of CNF-based macroinitiators that initiate radical polymerization of methyl acrylate and acrylic acid N-hydroxysuccinimide ester producing a graft block copolymer modified CNF. Finally, a luminescent probe (Lucifer yellow derivative) was labeled onto the modified CNF through an amidation reaction. The surface modification steps were verified with solid-state 13C nuclear magnetic resonance (NMR) and Fourier transform infrared spectroscopy. Fluorescence correlation spectroscopy (FCS) confirmed the successful labeling of the CNF; the CNF have a hydrodynamic radius of about 700 nm with an average number of dye molecules per fibril of at least 6600. The modified CNF was also imaged with confocal laser scanning microscopy. Luminescent CNF proved to be viable biomarkers and allow for fluorescence-based optical detection of CNF uptake and distribution in organisms such as crustaceans. The luminescent CNF were exposed to live juvenile daphnids and microscopy analysis revealed the presence of the luminescent CNF all over D. magna’s alimentary canal tissues without any toxicity effect leading to the death of the specimen. |
doi_str_mv | 10.1021/acs.biomac.5b01716 |
format | article |
fullrecord | <record><control><sourceid>acs_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_su_129629</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c298058704</sourcerecordid><originalsourceid>FETCH-LOGICAL-a417t-b8f727c27645498bcdc4e20632292bd169d702f3db2345ca2b054e621f0aa52b3</originalsourceid><addsrcrecordid>eNqFkV1P5CAUhonRrF_7B7ww_AA7wimF1jsd149koibu7i0BSrUOLRNosxl_vcxWvdQrTsjznHPgReiIkhklQE-ViTPd-k6ZWaEJFZRvoT1aAM8YJ7D9vy4yISqxi_ZjfCGEVDkrfqBd4KKsOCv3kF2MXdvbaGw_4DvVe2OdG52PFj84NTQ-dGf4KvgOz30_BO-crfF1UM2AL5w3y3S98m7d2dC-qqH1PR48vtgsFZY24Efbx7Z_OkQ7jXLR_nw_D9Cfq1-_5zfZ4v76dn6-yBSjYsh02QgQBgRnBatKbWrDLBCeA1Sga8qrWhBo8lpDeodRoEnBLAfaEKUK0PkBOpn6xn92NWq5Cm1aZC29auVl-_dc-vAk4ygpVByqhGff48vhWdKyyAVLPEy8CT7GYJtPgxK5iUSmSOQUiXyPJEnHk5QmdLb-VD4ySMBsAjbyix9Dn77oq45vBuubUA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Luminescent Nanocellulose Platform: From Controlled Graft Block Copolymerization to Biomarker Sensing</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Navarro, Julien R. G. ; Wennmalm, Stefan ; Godfrey, Jamie ; Breitholtz, Magnus ; Edlund, Ulrica</creator><creatorcontrib>Navarro, Julien R. G. ; Wennmalm, Stefan ; Godfrey, Jamie ; Breitholtz, Magnus ; Edlund, Ulrica</creatorcontrib><description>A strategy is devised for the conversion of cellulose nanofibrils (CNF) into fluorescently labeled probes involving the synthesis of CNF-based macroinitiators that initiate radical polymerization of methyl acrylate and acrylic acid N-hydroxysuccinimide ester producing a graft block copolymer modified CNF. Finally, a luminescent probe (Lucifer yellow derivative) was labeled onto the modified CNF through an amidation reaction. The surface modification steps were verified with solid-state 13C nuclear magnetic resonance (NMR) and Fourier transform infrared spectroscopy. Fluorescence correlation spectroscopy (FCS) confirmed the successful labeling of the CNF; the CNF have a hydrodynamic radius of about 700 nm with an average number of dye molecules per fibril of at least 6600. The modified CNF was also imaged with confocal laser scanning microscopy. Luminescent CNF proved to be viable biomarkers and allow for fluorescence-based optical detection of CNF uptake and distribution in organisms such as crustaceans. The luminescent CNF were exposed to live juvenile daphnids and microscopy analysis revealed the presence of the luminescent CNF all over D. magna’s alimentary canal tissues without any toxicity effect leading to the death of the specimen.</description><identifier>ISSN: 1525-7797</identifier><identifier>ISSN: 1526-4602</identifier><identifier>EISSN: 1526-4602</identifier><identifier>DOI: 10.1021/acs.biomac.5b01716</identifier><identifier>PMID: 26789648</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Acrylates - chemistry ; Animals ; Cellulose - analogs & derivatives ; Daphnia - cytology ; Fluorescent Dyes - chemistry ; Fluorescent Dyes - pharmacokinetics ; Isoquinolines - chemistry ; Isoquinolines - pharmacokinetics ; Microscopy, Fluorescence - methods ; Nanofibers - chemistry ; Staining and Labeling - methods</subject><ispartof>Biomacromolecules, 2016-03, Vol.17 (3), p.1101-1109</ispartof><rights>Copyright © 2016 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a417t-b8f727c27645498bcdc4e20632292bd169d702f3db2345ca2b054e621f0aa52b3</citedby><cites>FETCH-LOGICAL-a417t-b8f727c27645498bcdc4e20632292bd169d702f3db2345ca2b054e621f0aa52b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26789648$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-185374$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-129629$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Navarro, Julien R. G.</creatorcontrib><creatorcontrib>Wennmalm, Stefan</creatorcontrib><creatorcontrib>Godfrey, Jamie</creatorcontrib><creatorcontrib>Breitholtz, Magnus</creatorcontrib><creatorcontrib>Edlund, Ulrica</creatorcontrib><title>Luminescent Nanocellulose Platform: From Controlled Graft Block Copolymerization to Biomarker Sensing</title><title>Biomacromolecules</title><addtitle>Biomacromolecules</addtitle><description>A strategy is devised for the conversion of cellulose nanofibrils (CNF) into fluorescently labeled probes involving the synthesis of CNF-based macroinitiators that initiate radical polymerization of methyl acrylate and acrylic acid N-hydroxysuccinimide ester producing a graft block copolymer modified CNF. Finally, a luminescent probe (Lucifer yellow derivative) was labeled onto the modified CNF through an amidation reaction. The surface modification steps were verified with solid-state 13C nuclear magnetic resonance (NMR) and Fourier transform infrared spectroscopy. Fluorescence correlation spectroscopy (FCS) confirmed the successful labeling of the CNF; the CNF have a hydrodynamic radius of about 700 nm with an average number of dye molecules per fibril of at least 6600. The modified CNF was also imaged with confocal laser scanning microscopy. Luminescent CNF proved to be viable biomarkers and allow for fluorescence-based optical detection of CNF uptake and distribution in organisms such as crustaceans. The luminescent CNF were exposed to live juvenile daphnids and microscopy analysis revealed the presence of the luminescent CNF all over D. magna’s alimentary canal tissues without any toxicity effect leading to the death of the specimen.</description><subject>Acrylates - chemistry</subject><subject>Animals</subject><subject>Cellulose - analogs & derivatives</subject><subject>Daphnia - cytology</subject><subject>Fluorescent Dyes - chemistry</subject><subject>Fluorescent Dyes - pharmacokinetics</subject><subject>Isoquinolines - chemistry</subject><subject>Isoquinolines - pharmacokinetics</subject><subject>Microscopy, Fluorescence - methods</subject><subject>Nanofibers - chemistry</subject><subject>Staining and Labeling - methods</subject><issn>1525-7797</issn><issn>1526-4602</issn><issn>1526-4602</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkV1P5CAUhonRrF_7B7ww_AA7wimF1jsd149koibu7i0BSrUOLRNosxl_vcxWvdQrTsjznHPgReiIkhklQE-ViTPd-k6ZWaEJFZRvoT1aAM8YJ7D9vy4yISqxi_ZjfCGEVDkrfqBd4KKsOCv3kF2MXdvbaGw_4DvVe2OdG52PFj84NTQ-dGf4KvgOz30_BO-crfF1UM2AL5w3y3S98m7d2dC-qqH1PR48vtgsFZY24Efbx7Z_OkQ7jXLR_nw_D9Cfq1-_5zfZ4v76dn6-yBSjYsh02QgQBgRnBatKbWrDLBCeA1Sga8qrWhBo8lpDeodRoEnBLAfaEKUK0PkBOpn6xn92NWq5Cm1aZC29auVl-_dc-vAk4ygpVByqhGff48vhWdKyyAVLPEy8CT7GYJtPgxK5iUSmSOQUiXyPJEnHk5QmdLb-VD4ySMBsAjbyix9Dn77oq45vBuubUA</recordid><startdate>20160314</startdate><enddate>20160314</enddate><creator>Navarro, Julien R. G.</creator><creator>Wennmalm, Stefan</creator><creator>Godfrey, Jamie</creator><creator>Breitholtz, Magnus</creator><creator>Edlund, Ulrica</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8V</scope><scope>DG7</scope></search><sort><creationdate>20160314</creationdate><title>Luminescent Nanocellulose Platform: From Controlled Graft Block Copolymerization to Biomarker Sensing</title><author>Navarro, Julien R. G. ; Wennmalm, Stefan ; Godfrey, Jamie ; Breitholtz, Magnus ; Edlund, Ulrica</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a417t-b8f727c27645498bcdc4e20632292bd169d702f3db2345ca2b054e621f0aa52b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Acrylates - chemistry</topic><topic>Animals</topic><topic>Cellulose - analogs & derivatives</topic><topic>Daphnia - cytology</topic><topic>Fluorescent Dyes - chemistry</topic><topic>Fluorescent Dyes - pharmacokinetics</topic><topic>Isoquinolines - chemistry</topic><topic>Isoquinolines - pharmacokinetics</topic><topic>Microscopy, Fluorescence - methods</topic><topic>Nanofibers - chemistry</topic><topic>Staining and Labeling - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Navarro, Julien R. G.</creatorcontrib><creatorcontrib>Wennmalm, Stefan</creatorcontrib><creatorcontrib>Godfrey, Jamie</creatorcontrib><creatorcontrib>Breitholtz, Magnus</creatorcontrib><creatorcontrib>Edlund, Ulrica</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Kungliga Tekniska Högskolan</collection><collection>SWEPUB Stockholms universitet</collection><jtitle>Biomacromolecules</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Navarro, Julien R. G.</au><au>Wennmalm, Stefan</au><au>Godfrey, Jamie</au><au>Breitholtz, Magnus</au><au>Edlund, Ulrica</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Luminescent Nanocellulose Platform: From Controlled Graft Block Copolymerization to Biomarker Sensing</atitle><jtitle>Biomacromolecules</jtitle><addtitle>Biomacromolecules</addtitle><date>2016-03-14</date><risdate>2016</risdate><volume>17</volume><issue>3</issue><spage>1101</spage><epage>1109</epage><pages>1101-1109</pages><issn>1525-7797</issn><issn>1526-4602</issn><eissn>1526-4602</eissn><abstract>A strategy is devised for the conversion of cellulose nanofibrils (CNF) into fluorescently labeled probes involving the synthesis of CNF-based macroinitiators that initiate radical polymerization of methyl acrylate and acrylic acid N-hydroxysuccinimide ester producing a graft block copolymer modified CNF. Finally, a luminescent probe (Lucifer yellow derivative) was labeled onto the modified CNF through an amidation reaction. The surface modification steps were verified with solid-state 13C nuclear magnetic resonance (NMR) and Fourier transform infrared spectroscopy. Fluorescence correlation spectroscopy (FCS) confirmed the successful labeling of the CNF; the CNF have a hydrodynamic radius of about 700 nm with an average number of dye molecules per fibril of at least 6600. The modified CNF was also imaged with confocal laser scanning microscopy. Luminescent CNF proved to be viable biomarkers and allow for fluorescence-based optical detection of CNF uptake and distribution in organisms such as crustaceans. The luminescent CNF were exposed to live juvenile daphnids and microscopy analysis revealed the presence of the luminescent CNF all over D. magna’s alimentary canal tissues without any toxicity effect leading to the death of the specimen.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26789648</pmid><doi>10.1021/acs.biomac.5b01716</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1525-7797 |
ispartof | Biomacromolecules, 2016-03, Vol.17 (3), p.1101-1109 |
issn | 1525-7797 1526-4602 1526-4602 |
language | eng |
recordid | cdi_swepub_primary_oai_DiVA_org_su_129629 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Acrylates - chemistry Animals Cellulose - analogs & derivatives Daphnia - cytology Fluorescent Dyes - chemistry Fluorescent Dyes - pharmacokinetics Isoquinolines - chemistry Isoquinolines - pharmacokinetics Microscopy, Fluorescence - methods Nanofibers - chemistry Staining and Labeling - methods |
title | Luminescent Nanocellulose Platform: From Controlled Graft Block Copolymerization to Biomarker Sensing |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A19%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Luminescent%20Nanocellulose%20Platform:%20From%20Controlled%20Graft%20Block%20Copolymerization%20to%20Biomarker%20Sensing&rft.jtitle=Biomacromolecules&rft.au=Navarro,%20Julien%20R.%20G.&rft.date=2016-03-14&rft.volume=17&rft.issue=3&rft.spage=1101&rft.epage=1109&rft.pages=1101-1109&rft.issn=1525-7797&rft.eissn=1526-4602&rft_id=info:doi/10.1021/acs.biomac.5b01716&rft_dat=%3Cacs_swepu%3Ec298058704%3C/acs_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a417t-b8f727c27645498bcdc4e20632292bd169d702f3db2345ca2b054e621f0aa52b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/26789648&rfr_iscdi=true |