Loading…

Luminescent Nanocellulose Platform: From Controlled Graft Block Copolymerization to Biomarker Sensing

A strategy is devised for the conversion of cellulose nanofibrils (CNF) into fluorescently labeled probes involving the synthesis of CNF-based macroinitiators that initiate radical polymerization of methyl acrylate and acrylic acid N-hydroxysuccinimide ester producing a graft block copolymer modifie...

Full description

Saved in:
Bibliographic Details
Published in:Biomacromolecules 2016-03, Vol.17 (3), p.1101-1109
Main Authors: Navarro, Julien R. G., Wennmalm, Stefan, Godfrey, Jamie, Breitholtz, Magnus, Edlund, Ulrica
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a417t-b8f727c27645498bcdc4e20632292bd169d702f3db2345ca2b054e621f0aa52b3
cites cdi_FETCH-LOGICAL-a417t-b8f727c27645498bcdc4e20632292bd169d702f3db2345ca2b054e621f0aa52b3
container_end_page 1109
container_issue 3
container_start_page 1101
container_title Biomacromolecules
container_volume 17
creator Navarro, Julien R. G.
Wennmalm, Stefan
Godfrey, Jamie
Breitholtz, Magnus
Edlund, Ulrica
description A strategy is devised for the conversion of cellulose nanofibrils (CNF) into fluorescently labeled probes involving the synthesis of CNF-based macroinitiators that initiate radical polymerization of methyl acrylate and acrylic acid N-hydroxysuccinimide ester producing a graft block copolymer modified CNF. Finally, a luminescent probe (Lucifer yellow derivative) was labeled onto the modified CNF through an amidation reaction. The surface modification steps were verified with solid-state 13C nuclear magnetic resonance (NMR) and Fourier transform infrared spectroscopy. Fluorescence correlation spectroscopy (FCS) confirmed the successful labeling of the CNF; the CNF have a hydrodynamic radius of about 700 nm with an average number of dye molecules per fibril of at least 6600. The modified CNF was also imaged with confocal laser scanning microscopy. Luminescent CNF proved to be viable biomarkers and allow for fluorescence-based optical detection of CNF uptake and distribution in organisms such as crustaceans. The luminescent CNF were exposed to live juvenile daphnids and microscopy analysis revealed the presence of the luminescent CNF all over D. magna’s alimentary canal tissues without any toxicity effect leading to the death of the specimen.
doi_str_mv 10.1021/acs.biomac.5b01716
format article
fullrecord <record><control><sourceid>acs_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_su_129629</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c298058704</sourcerecordid><originalsourceid>FETCH-LOGICAL-a417t-b8f727c27645498bcdc4e20632292bd169d702f3db2345ca2b054e621f0aa52b3</originalsourceid><addsrcrecordid>eNqFkV1P5CAUhonRrF_7B7ww_AA7wimF1jsd149koibu7i0BSrUOLRNosxl_vcxWvdQrTsjznHPgReiIkhklQE-ViTPd-k6ZWaEJFZRvoT1aAM8YJ7D9vy4yISqxi_ZjfCGEVDkrfqBd4KKsOCv3kF2MXdvbaGw_4DvVe2OdG52PFj84NTQ-dGf4KvgOz30_BO-crfF1UM2AL5w3y3S98m7d2dC-qqH1PR48vtgsFZY24Efbx7Z_OkQ7jXLR_nw_D9Cfq1-_5zfZ4v76dn6-yBSjYsh02QgQBgRnBatKbWrDLBCeA1Sga8qrWhBo8lpDeodRoEnBLAfaEKUK0PkBOpn6xn92NWq5Cm1aZC29auVl-_dc-vAk4ygpVByqhGff48vhWdKyyAVLPEy8CT7GYJtPgxK5iUSmSOQUiXyPJEnHk5QmdLb-VD4ySMBsAjbyix9Dn77oq45vBuubUA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Luminescent Nanocellulose Platform: From Controlled Graft Block Copolymerization to Biomarker Sensing</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Navarro, Julien R. G. ; Wennmalm, Stefan ; Godfrey, Jamie ; Breitholtz, Magnus ; Edlund, Ulrica</creator><creatorcontrib>Navarro, Julien R. G. ; Wennmalm, Stefan ; Godfrey, Jamie ; Breitholtz, Magnus ; Edlund, Ulrica</creatorcontrib><description>A strategy is devised for the conversion of cellulose nanofibrils (CNF) into fluorescently labeled probes involving the synthesis of CNF-based macroinitiators that initiate radical polymerization of methyl acrylate and acrylic acid N-hydroxysuccinimide ester producing a graft block copolymer modified CNF. Finally, a luminescent probe (Lucifer yellow derivative) was labeled onto the modified CNF through an amidation reaction. The surface modification steps were verified with solid-state 13C nuclear magnetic resonance (NMR) and Fourier transform infrared spectroscopy. Fluorescence correlation spectroscopy (FCS) confirmed the successful labeling of the CNF; the CNF have a hydrodynamic radius of about 700 nm with an average number of dye molecules per fibril of at least 6600. The modified CNF was also imaged with confocal laser scanning microscopy. Luminescent CNF proved to be viable biomarkers and allow for fluorescence-based optical detection of CNF uptake and distribution in organisms such as crustaceans. The luminescent CNF were exposed to live juvenile daphnids and microscopy analysis revealed the presence of the luminescent CNF all over D. magna’s alimentary canal tissues without any toxicity effect leading to the death of the specimen.</description><identifier>ISSN: 1525-7797</identifier><identifier>ISSN: 1526-4602</identifier><identifier>EISSN: 1526-4602</identifier><identifier>DOI: 10.1021/acs.biomac.5b01716</identifier><identifier>PMID: 26789648</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Acrylates - chemistry ; Animals ; Cellulose - analogs &amp; derivatives ; Daphnia - cytology ; Fluorescent Dyes - chemistry ; Fluorescent Dyes - pharmacokinetics ; Isoquinolines - chemistry ; Isoquinolines - pharmacokinetics ; Microscopy, Fluorescence - methods ; Nanofibers - chemistry ; Staining and Labeling - methods</subject><ispartof>Biomacromolecules, 2016-03, Vol.17 (3), p.1101-1109</ispartof><rights>Copyright © 2016 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a417t-b8f727c27645498bcdc4e20632292bd169d702f3db2345ca2b054e621f0aa52b3</citedby><cites>FETCH-LOGICAL-a417t-b8f727c27645498bcdc4e20632292bd169d702f3db2345ca2b054e621f0aa52b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26789648$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-185374$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-129629$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Navarro, Julien R. G.</creatorcontrib><creatorcontrib>Wennmalm, Stefan</creatorcontrib><creatorcontrib>Godfrey, Jamie</creatorcontrib><creatorcontrib>Breitholtz, Magnus</creatorcontrib><creatorcontrib>Edlund, Ulrica</creatorcontrib><title>Luminescent Nanocellulose Platform: From Controlled Graft Block Copolymerization to Biomarker Sensing</title><title>Biomacromolecules</title><addtitle>Biomacromolecules</addtitle><description>A strategy is devised for the conversion of cellulose nanofibrils (CNF) into fluorescently labeled probes involving the synthesis of CNF-based macroinitiators that initiate radical polymerization of methyl acrylate and acrylic acid N-hydroxysuccinimide ester producing a graft block copolymer modified CNF. Finally, a luminescent probe (Lucifer yellow derivative) was labeled onto the modified CNF through an amidation reaction. The surface modification steps were verified with solid-state 13C nuclear magnetic resonance (NMR) and Fourier transform infrared spectroscopy. Fluorescence correlation spectroscopy (FCS) confirmed the successful labeling of the CNF; the CNF have a hydrodynamic radius of about 700 nm with an average number of dye molecules per fibril of at least 6600. The modified CNF was also imaged with confocal laser scanning microscopy. Luminescent CNF proved to be viable biomarkers and allow for fluorescence-based optical detection of CNF uptake and distribution in organisms such as crustaceans. The luminescent CNF were exposed to live juvenile daphnids and microscopy analysis revealed the presence of the luminescent CNF all over D. magna’s alimentary canal tissues without any toxicity effect leading to the death of the specimen.</description><subject>Acrylates - chemistry</subject><subject>Animals</subject><subject>Cellulose - analogs &amp; derivatives</subject><subject>Daphnia - cytology</subject><subject>Fluorescent Dyes - chemistry</subject><subject>Fluorescent Dyes - pharmacokinetics</subject><subject>Isoquinolines - chemistry</subject><subject>Isoquinolines - pharmacokinetics</subject><subject>Microscopy, Fluorescence - methods</subject><subject>Nanofibers - chemistry</subject><subject>Staining and Labeling - methods</subject><issn>1525-7797</issn><issn>1526-4602</issn><issn>1526-4602</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkV1P5CAUhonRrF_7B7ww_AA7wimF1jsd149koibu7i0BSrUOLRNosxl_vcxWvdQrTsjznHPgReiIkhklQE-ViTPd-k6ZWaEJFZRvoT1aAM8YJ7D9vy4yISqxi_ZjfCGEVDkrfqBd4KKsOCv3kF2MXdvbaGw_4DvVe2OdG52PFj84NTQ-dGf4KvgOz30_BO-crfF1UM2AL5w3y3S98m7d2dC-qqH1PR48vtgsFZY24Efbx7Z_OkQ7jXLR_nw_D9Cfq1-_5zfZ4v76dn6-yBSjYsh02QgQBgRnBatKbWrDLBCeA1Sga8qrWhBo8lpDeodRoEnBLAfaEKUK0PkBOpn6xn92NWq5Cm1aZC29auVl-_dc-vAk4ygpVByqhGff48vhWdKyyAVLPEy8CT7GYJtPgxK5iUSmSOQUiXyPJEnHk5QmdLb-VD4ySMBsAjbyix9Dn77oq45vBuubUA</recordid><startdate>20160314</startdate><enddate>20160314</enddate><creator>Navarro, Julien R. G.</creator><creator>Wennmalm, Stefan</creator><creator>Godfrey, Jamie</creator><creator>Breitholtz, Magnus</creator><creator>Edlund, Ulrica</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8V</scope><scope>DG7</scope></search><sort><creationdate>20160314</creationdate><title>Luminescent Nanocellulose Platform: From Controlled Graft Block Copolymerization to Biomarker Sensing</title><author>Navarro, Julien R. G. ; Wennmalm, Stefan ; Godfrey, Jamie ; Breitholtz, Magnus ; Edlund, Ulrica</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a417t-b8f727c27645498bcdc4e20632292bd169d702f3db2345ca2b054e621f0aa52b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Acrylates - chemistry</topic><topic>Animals</topic><topic>Cellulose - analogs &amp; derivatives</topic><topic>Daphnia - cytology</topic><topic>Fluorescent Dyes - chemistry</topic><topic>Fluorescent Dyes - pharmacokinetics</topic><topic>Isoquinolines - chemistry</topic><topic>Isoquinolines - pharmacokinetics</topic><topic>Microscopy, Fluorescence - methods</topic><topic>Nanofibers - chemistry</topic><topic>Staining and Labeling - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Navarro, Julien R. G.</creatorcontrib><creatorcontrib>Wennmalm, Stefan</creatorcontrib><creatorcontrib>Godfrey, Jamie</creatorcontrib><creatorcontrib>Breitholtz, Magnus</creatorcontrib><creatorcontrib>Edlund, Ulrica</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Kungliga Tekniska Högskolan</collection><collection>SWEPUB Stockholms universitet</collection><jtitle>Biomacromolecules</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Navarro, Julien R. G.</au><au>Wennmalm, Stefan</au><au>Godfrey, Jamie</au><au>Breitholtz, Magnus</au><au>Edlund, Ulrica</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Luminescent Nanocellulose Platform: From Controlled Graft Block Copolymerization to Biomarker Sensing</atitle><jtitle>Biomacromolecules</jtitle><addtitle>Biomacromolecules</addtitle><date>2016-03-14</date><risdate>2016</risdate><volume>17</volume><issue>3</issue><spage>1101</spage><epage>1109</epage><pages>1101-1109</pages><issn>1525-7797</issn><issn>1526-4602</issn><eissn>1526-4602</eissn><abstract>A strategy is devised for the conversion of cellulose nanofibrils (CNF) into fluorescently labeled probes involving the synthesis of CNF-based macroinitiators that initiate radical polymerization of methyl acrylate and acrylic acid N-hydroxysuccinimide ester producing a graft block copolymer modified CNF. Finally, a luminescent probe (Lucifer yellow derivative) was labeled onto the modified CNF through an amidation reaction. The surface modification steps were verified with solid-state 13C nuclear magnetic resonance (NMR) and Fourier transform infrared spectroscopy. Fluorescence correlation spectroscopy (FCS) confirmed the successful labeling of the CNF; the CNF have a hydrodynamic radius of about 700 nm with an average number of dye molecules per fibril of at least 6600. The modified CNF was also imaged with confocal laser scanning microscopy. Luminescent CNF proved to be viable biomarkers and allow for fluorescence-based optical detection of CNF uptake and distribution in organisms such as crustaceans. The luminescent CNF were exposed to live juvenile daphnids and microscopy analysis revealed the presence of the luminescent CNF all over D. magna’s alimentary canal tissues without any toxicity effect leading to the death of the specimen.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26789648</pmid><doi>10.1021/acs.biomac.5b01716</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1525-7797
ispartof Biomacromolecules, 2016-03, Vol.17 (3), p.1101-1109
issn 1525-7797
1526-4602
1526-4602
language eng
recordid cdi_swepub_primary_oai_DiVA_org_su_129629
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Acrylates - chemistry
Animals
Cellulose - analogs & derivatives
Daphnia - cytology
Fluorescent Dyes - chemistry
Fluorescent Dyes - pharmacokinetics
Isoquinolines - chemistry
Isoquinolines - pharmacokinetics
Microscopy, Fluorescence - methods
Nanofibers - chemistry
Staining and Labeling - methods
title Luminescent Nanocellulose Platform: From Controlled Graft Block Copolymerization to Biomarker Sensing
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A19%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Luminescent%20Nanocellulose%20Platform:%20From%20Controlled%20Graft%20Block%20Copolymerization%20to%20Biomarker%20Sensing&rft.jtitle=Biomacromolecules&rft.au=Navarro,%20Julien%20R.%20G.&rft.date=2016-03-14&rft.volume=17&rft.issue=3&rft.spage=1101&rft.epage=1109&rft.pages=1101-1109&rft.issn=1525-7797&rft.eissn=1526-4602&rft_id=info:doi/10.1021/acs.biomac.5b01716&rft_dat=%3Cacs_swepu%3Ec298058704%3C/acs_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a417t-b8f727c27645498bcdc4e20632292bd169d702f3db2345ca2b054e621f0aa52b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/26789648&rfr_iscdi=true