Loading…

Release of mineral-bound water prior to subduction tied to shallow seismogenic slip off Sumatra

Plate-boundary fault rupture during the 2004 Sumatra-Andaman subduction earthquake extended closer to the trench than expected, increasing earthquake and tsunami size. International Ocean Discovery Program Expedition 362 sampled incoming sediments offshore northern Sumatra, revealing recent release...

Full description

Saved in:
Bibliographic Details
Published in:Science (American Association for the Advancement of Science) 2017-05, Vol.356 (6340), p.841-844
Main Authors: Hüpers, Andre, Torres, Marta E., Owari, Satoko, McNeill, Lisa C., Dugan, Brandon, Henstock, Timothy J., Milliken, Kitty L., Petronotis, Katerina E., Backman, Jan, Bourlange, Sylvain, Chemale, Farid, Chen, Wenhuang, Colson, Tobias A., Frederik, Marina C. G., Guèrin, Gilles, Hamahashi, Mari, House, Brian M., Jeppson, Tamara N., Kachovich, Sarah, Kenigsberg, Abby R., Kuranaga, Mebae, Kutterolf, Steffen, Mitchison, Freya L., Mukoyoshi, Hideki, Nair, Nisha, Pickering, Kevin T., Pouderoux, Hugo F. A., Shan, Yehua, Song, Insun, Vannucchi, Paola, Vrolijk, Peter J., Yang, Tao, Zhao, Xixi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Plate-boundary fault rupture during the 2004 Sumatra-Andaman subduction earthquake extended closer to the trench than expected, increasing earthquake and tsunami size. International Ocean Discovery Program Expedition 362 sampled incoming sediments offshore northern Sumatra, revealing recent release of fresh water within the deep sediments. Thermal modeling links this freshening to amorphous silica dehydration driven by rapid burial-induced temperature increases in the past 9 million years.Complete dehydration of silicates is expected before plate subduction, contrasting with prevailing models for subduction seismogenesis calling for fluid production during subduction. Shallow slip offshore Sumatra appears driven by diagenetic strengthening of deeply buried fault-forming sediments, contrasting with weakening proposed for the shallow Tohoku-Oki 2011 rupture, but our results are applicable to other thickly sedimented subduction zones including those with limited earthquake records.
ISSN:0036-8075
1095-9203
1095-9203
DOI:10.1126/science.aal3429