Loading…

Carbon mineralization in Laptev and East Siberian sea shelf and slope sediment

The Siberian Arctic Sea shelf and slope is a key region for the degradation of terrestrial organic material transported from the organic carbon-rich permafrost regions of Siberia. We report on sediment carbon mineralization rates based on O2 microelectrode profiling, intact sediment core incubations...

Full description

Saved in:
Bibliographic Details
Published in:Biogeosciences 2018, Vol.15 (2), p.471
Main Authors: Brüchert, Volker, Bröder, Lisa, Sawicka, Joanna E., Tesi, Tommaso, Joye, Samantha P., Sun, Xiaole, Semiletov, Igor P., Samarkin, Vladimir A.
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The Siberian Arctic Sea shelf and slope is a key region for the degradation of terrestrial organic material transported from the organic carbon-rich permafrost regions of Siberia. We report on sediment carbon mineralization rates based on O2 microelectrode profiling, intact sediment core incubations, 35 S-sulfate tracer experiments, porewater dissolved inorganic carbon (DIC), δ13 CDIC, and iron, manganese, and ammonium concentrations from 20 shelf and slope stations. This data set provides a spatial overview of sediment carbon mineralization rates and pathways over large parts of the outer Laptev and East Siberian Arctic shelf and slope, and allowed us to assess degradation rates and efficiency of carbon burial in these sediments. Rates of oxygen uptake and iron and manganese reduction were comparable to temperate shelf and slope environments, but bacterial sulfate reduction rates were comparatively low. In the topmost 20 to 50 cm of sediment, aerobic carbon mineralization dominated degradation and comprised on average 82% of the depthintegrated carbon mineralization. Oxygen uptake rates and 35 S-sulfate reduction rates were higher in the eastern East Siberian Sea shelf compared to the Laptev Sea shelf. DIC/NH4 + ratios in porewaters and the stable carbon isotope composition of remineralized DIC indicated that the degraded organic matter on the Siberian shelf and slope was a mixture of marine and terrestrial organic matter. Based on dual end member calculations, the terrestrial organic carbon contribution varied between 32% and 36%, with a higher contribution in the Laptev Sea than in the East Siberian Sea. Extrapolation of the measured degradation rates using  isotope end member apportionment over the outer shelf of the Laptev and East Siberian Sea suggests that about 16 Tg C per year are respired in the outer shelf sea floor sediment. Of the organic matter buried below the oxygen penetration depth, between 0.6 and 1.3 Tg C per year are degraded by anaerobic processes, with a terrestrial organic carbon contribution ranging between 0.3 and 0.5 Tg per year.
ISSN:1726-4170
1726-4189
DOI:10.5194/bg-2017-119