Loading…
Methane production as key to the greenhouse gas budget of thawing permafrost
Permafrost thaw liberates frozen organic carbon, which is decomposed into carbon dioxide (CO 2 ) and methane (CH 4 ). The release of these greenhouse gases (GHGs) forms a positive feedback to atmospheric CO 2 and CH 4 concentrations and accelerates climate change 1 , 2 . Current studies report a min...
Saved in:
Published in: | Nature climate change 2018-04, Vol.8 (4), p.309-312 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c462t-6f371a550e333ef811dce08811d3ecc093d4884be2351fb8d0949e51490f4d6c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c462t-6f371a550e333ef811dce08811d3ecc093d4884be2351fb8d0949e51490f4d6c3 |
container_end_page | 312 |
container_issue | 4 |
container_start_page | 309 |
container_title | Nature climate change |
container_volume | 8 |
creator | Knoblauch, Christian Beer, Christian Liebner, Susanne Grigoriev, Mikhail N. Pfeiffer, Eva-Maria |
description | Permafrost thaw liberates frozen organic carbon, which is decomposed into carbon dioxide (CO
2
) and methane (CH
4
). The release of these greenhouse gases (GHGs) forms a positive feedback to atmospheric CO
2
and CH
4
concentrations and accelerates climate change
1
,
2
. Current studies report a minor importance of CH
4
production in water-saturated (anoxic) permafrost soils
3
–
6
and a stronger permafrost carbon–climate feedback from drained (oxic) soils
1
,
7
. Here we show through seven-year laboratory incubations that equal amounts of CO
2
and CH
4
are formed in thawing permafrost under anoxic conditions after stable CH
4
-producing microbial communities have established. Less permafrost carbon was mineralized under anoxic conditions but more CO
2
–carbon equivalents (CO
2
–Ce) were formed than under oxic conditions when the higher global warming potential (GWP) of CH
4
is taken into account
8
. A model of organic carbon decomposition, calibrated with the observed decomposition data, predicts a higher loss of permafrost carbon under oxic conditions (113 ± 58 g CO
2
–C kgC
−1
(kgC, kilograms of carbon)) by 2100, but a twice as high production of CO
2
–Ce (241 ± 138 g CO
2
–Ce kgC
−1
) under anoxic conditions. These findings challenge the view of a stronger permafrost carbon-climate feedback from drained soils
1
,
7
and emphasize the importance of CH
4
production in thawing permafrost on climate-relevant timescales.
An organic carbon decomposition model, calibrated with laboratory incubations, indicates a greater production rate of CO
2
-C equivalents from waterlogged (compared to drained) permafrost soils, when the higher global warming potential of methane is factored in. |
doi_str_mv | 10.1038/s41558-018-0095-z |
format | article |
fullrecord | <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_su_156052</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2021295880</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-6f371a550e333ef811dce08811d3ecc093d4884be2351fb8d0949e51490f4d6c3</originalsourceid><addsrcrecordid>eNp1kN9LwzAQx4MoOOb-AN8CvlpNmqZNHsf8CRNfVHwLaXvpOl1Tk5Sx_fVmbMwnA-GOu899ufsidEnJDSVM3PqMci4SQuMnkifbEzSiRazkhRSnx1x8nqOJ90sSX0FzlssRmr9AWOgOcO9sPVShtR3WHn_BBgeLwwJw4wC6hR18TGOnHOoGArYmNvW67Rrcg1tp46wPF-jM6G8Pk0Mco_eH-7fZUzJ_fXyeTedJleVpSHLDCqo5J8AYAyMorSsgYhcZVBWRrM6EyEpIGaemFDWRmQROM0lMVucVG6Prva5fQz-UqnftSruNsrpVd-3HVFnXKD8oynPC04hf7fF4488APqilHVwXN1QpSWkquRAkUnRPVfEU78AcZSlRO5vV3mYVbVY7m9U2zqSHRSLbNeD-lP8f-gVljoAc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2021295880</pqid></control><display><type>article</type><title>Methane production as key to the greenhouse gas budget of thawing permafrost</title><source>Nature</source><creator>Knoblauch, Christian ; Beer, Christian ; Liebner, Susanne ; Grigoriev, Mikhail N. ; Pfeiffer, Eva-Maria</creator><creatorcontrib>Knoblauch, Christian ; Beer, Christian ; Liebner, Susanne ; Grigoriev, Mikhail N. ; Pfeiffer, Eva-Maria</creatorcontrib><description>Permafrost thaw liberates frozen organic carbon, which is decomposed into carbon dioxide (CO
2
) and methane (CH
4
). The release of these greenhouse gases (GHGs) forms a positive feedback to atmospheric CO
2
and CH
4
concentrations and accelerates climate change
1
,
2
. Current studies report a minor importance of CH
4
production in water-saturated (anoxic) permafrost soils
3
–
6
and a stronger permafrost carbon–climate feedback from drained (oxic) soils
1
,
7
. Here we show through seven-year laboratory incubations that equal amounts of CO
2
and CH
4
are formed in thawing permafrost under anoxic conditions after stable CH
4
-producing microbial communities have established. Less permafrost carbon was mineralized under anoxic conditions but more CO
2
–carbon equivalents (CO
2
–Ce) were formed than under oxic conditions when the higher global warming potential (GWP) of CH
4
is taken into account
8
. A model of organic carbon decomposition, calibrated with the observed decomposition data, predicts a higher loss of permafrost carbon under oxic conditions (113 ± 58 g CO
2
–C kgC
−1
(kgC, kilograms of carbon)) by 2100, but a twice as high production of CO
2
–Ce (241 ± 138 g CO
2
–Ce kgC
−1
) under anoxic conditions. These findings challenge the view of a stronger permafrost carbon-climate feedback from drained soils
1
,
7
and emphasize the importance of CH
4
production in thawing permafrost on climate-relevant timescales.
An organic carbon decomposition model, calibrated with laboratory incubations, indicates a greater production rate of CO
2
-C equivalents from waterlogged (compared to drained) permafrost soils, when the higher global warming potential of methane is factored in.</description><identifier>ISSN: 1758-678X</identifier><identifier>ISSN: 1758-6798</identifier><identifier>EISSN: 1758-6798</identifier><identifier>DOI: 10.1038/s41558-018-0095-z</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>704/106/125 ; 704/106/47 ; 704/47 ; Anoxia ; Anoxic conditions ; Carbon ; Carbon dioxide ; Carbon dioxide atmospheric concentrations ; Climate ; Climate Change ; Climate Change/Climate Change Impacts ; Decomposition ; Earth and Environmental Science ; Environment ; Environmental Law/Policy/Ecojustice ; Feedback ; Gases ; Global warming ; Greenhouse effect ; Greenhouse gases ; Letter ; Melting ; Methane ; Methane production ; Microbial activity ; Microorganisms ; Organic carbon ; Oxic conditions ; Permafrost ; Positive feedback ; Thawing</subject><ispartof>Nature climate change, 2018-04, Vol.8 (4), p.309-312</ispartof><rights>The Author(s) 2018</rights><rights>Copyright Nature Publishing Group Apr 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-6f371a550e333ef811dce08811d3ecc093d4884be2351fb8d0949e51490f4d6c3</citedby><cites>FETCH-LOGICAL-c462t-6f371a550e333ef811dce08811d3ecc093d4884be2351fb8d0949e51490f4d6c3</cites><orcidid>0000-0002-7147-1008</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-156052$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Knoblauch, Christian</creatorcontrib><creatorcontrib>Beer, Christian</creatorcontrib><creatorcontrib>Liebner, Susanne</creatorcontrib><creatorcontrib>Grigoriev, Mikhail N.</creatorcontrib><creatorcontrib>Pfeiffer, Eva-Maria</creatorcontrib><title>Methane production as key to the greenhouse gas budget of thawing permafrost</title><title>Nature climate change</title><addtitle>Nature Clim Change</addtitle><description>Permafrost thaw liberates frozen organic carbon, which is decomposed into carbon dioxide (CO
2
) and methane (CH
4
). The release of these greenhouse gases (GHGs) forms a positive feedback to atmospheric CO
2
and CH
4
concentrations and accelerates climate change
1
,
2
. Current studies report a minor importance of CH
4
production in water-saturated (anoxic) permafrost soils
3
–
6
and a stronger permafrost carbon–climate feedback from drained (oxic) soils
1
,
7
. Here we show through seven-year laboratory incubations that equal amounts of CO
2
and CH
4
are formed in thawing permafrost under anoxic conditions after stable CH
4
-producing microbial communities have established. Less permafrost carbon was mineralized under anoxic conditions but more CO
2
–carbon equivalents (CO
2
–Ce) were formed than under oxic conditions when the higher global warming potential (GWP) of CH
4
is taken into account
8
. A model of organic carbon decomposition, calibrated with the observed decomposition data, predicts a higher loss of permafrost carbon under oxic conditions (113 ± 58 g CO
2
–C kgC
−1
(kgC, kilograms of carbon)) by 2100, but a twice as high production of CO
2
–Ce (241 ± 138 g CO
2
–Ce kgC
−1
) under anoxic conditions. These findings challenge the view of a stronger permafrost carbon-climate feedback from drained soils
1
,
7
and emphasize the importance of CH
4
production in thawing permafrost on climate-relevant timescales.
An organic carbon decomposition model, calibrated with laboratory incubations, indicates a greater production rate of CO
2
-C equivalents from waterlogged (compared to drained) permafrost soils, when the higher global warming potential of methane is factored in.</description><subject>704/106/125</subject><subject>704/106/47</subject><subject>704/47</subject><subject>Anoxia</subject><subject>Anoxic conditions</subject><subject>Carbon</subject><subject>Carbon dioxide</subject><subject>Carbon dioxide atmospheric concentrations</subject><subject>Climate</subject><subject>Climate Change</subject><subject>Climate Change/Climate Change Impacts</subject><subject>Decomposition</subject><subject>Earth and Environmental Science</subject><subject>Environment</subject><subject>Environmental Law/Policy/Ecojustice</subject><subject>Feedback</subject><subject>Gases</subject><subject>Global warming</subject><subject>Greenhouse effect</subject><subject>Greenhouse gases</subject><subject>Letter</subject><subject>Melting</subject><subject>Methane</subject><subject>Methane production</subject><subject>Microbial activity</subject><subject>Microorganisms</subject><subject>Organic carbon</subject><subject>Oxic conditions</subject><subject>Permafrost</subject><subject>Positive feedback</subject><subject>Thawing</subject><issn>1758-678X</issn><issn>1758-6798</issn><issn>1758-6798</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kN9LwzAQx4MoOOb-AN8CvlpNmqZNHsf8CRNfVHwLaXvpOl1Tk5Sx_fVmbMwnA-GOu899ufsidEnJDSVM3PqMci4SQuMnkifbEzSiRazkhRSnx1x8nqOJ90sSX0FzlssRmr9AWOgOcO9sPVShtR3WHn_BBgeLwwJw4wC6hR18TGOnHOoGArYmNvW67Rrcg1tp46wPF-jM6G8Pk0Mco_eH-7fZUzJ_fXyeTedJleVpSHLDCqo5J8AYAyMorSsgYhcZVBWRrM6EyEpIGaemFDWRmQROM0lMVucVG6Prva5fQz-UqnftSruNsrpVd-3HVFnXKD8oynPC04hf7fF4488APqilHVwXN1QpSWkquRAkUnRPVfEU78AcZSlRO5vV3mYVbVY7m9U2zqSHRSLbNeD-lP8f-gVljoAc</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Knoblauch, Christian</creator><creator>Beer, Christian</creator><creator>Liebner, Susanne</creator><creator>Grigoriev, Mikhail N.</creator><creator>Pfeiffer, Eva-Maria</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7TG</scope><scope>7TN</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>H97</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M2P</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>SOI</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>DG7</scope><orcidid>https://orcid.org/0000-0002-7147-1008</orcidid></search><sort><creationdate>20180401</creationdate><title>Methane production as key to the greenhouse gas budget of thawing permafrost</title><author>Knoblauch, Christian ; Beer, Christian ; Liebner, Susanne ; Grigoriev, Mikhail N. ; Pfeiffer, Eva-Maria</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-6f371a550e333ef811dce08811d3ecc093d4884be2351fb8d0949e51490f4d6c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>704/106/125</topic><topic>704/106/47</topic><topic>704/47</topic><topic>Anoxia</topic><topic>Anoxic conditions</topic><topic>Carbon</topic><topic>Carbon dioxide</topic><topic>Carbon dioxide atmospheric concentrations</topic><topic>Climate</topic><topic>Climate Change</topic><topic>Climate Change/Climate Change Impacts</topic><topic>Decomposition</topic><topic>Earth and Environmental Science</topic><topic>Environment</topic><topic>Environmental Law/Policy/Ecojustice</topic><topic>Feedback</topic><topic>Gases</topic><topic>Global warming</topic><topic>Greenhouse effect</topic><topic>Greenhouse gases</topic><topic>Letter</topic><topic>Melting</topic><topic>Methane</topic><topic>Methane production</topic><topic>Microbial activity</topic><topic>Microorganisms</topic><topic>Organic carbon</topic><topic>Oxic conditions</topic><topic>Permafrost</topic><topic>Positive feedback</topic><topic>Thawing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Knoblauch, Christian</creatorcontrib><creatorcontrib>Beer, Christian</creatorcontrib><creatorcontrib>Liebner, Susanne</creatorcontrib><creatorcontrib>Grigoriev, Mikhail N.</creatorcontrib><creatorcontrib>Pfeiffer, Eva-Maria</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Science Journals</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Stockholms universitet</collection><jtitle>Nature climate change</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Knoblauch, Christian</au><au>Beer, Christian</au><au>Liebner, Susanne</au><au>Grigoriev, Mikhail N.</au><au>Pfeiffer, Eva-Maria</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Methane production as key to the greenhouse gas budget of thawing permafrost</atitle><jtitle>Nature climate change</jtitle><stitle>Nature Clim Change</stitle><date>2018-04-01</date><risdate>2018</risdate><volume>8</volume><issue>4</issue><spage>309</spage><epage>312</epage><pages>309-312</pages><issn>1758-678X</issn><issn>1758-6798</issn><eissn>1758-6798</eissn><abstract>Permafrost thaw liberates frozen organic carbon, which is decomposed into carbon dioxide (CO
2
) and methane (CH
4
). The release of these greenhouse gases (GHGs) forms a positive feedback to atmospheric CO
2
and CH
4
concentrations and accelerates climate change
1
,
2
. Current studies report a minor importance of CH
4
production in water-saturated (anoxic) permafrost soils
3
–
6
and a stronger permafrost carbon–climate feedback from drained (oxic) soils
1
,
7
. Here we show through seven-year laboratory incubations that equal amounts of CO
2
and CH
4
are formed in thawing permafrost under anoxic conditions after stable CH
4
-producing microbial communities have established. Less permafrost carbon was mineralized under anoxic conditions but more CO
2
–carbon equivalents (CO
2
–Ce) were formed than under oxic conditions when the higher global warming potential (GWP) of CH
4
is taken into account
8
. A model of organic carbon decomposition, calibrated with the observed decomposition data, predicts a higher loss of permafrost carbon under oxic conditions (113 ± 58 g CO
2
–C kgC
−1
(kgC, kilograms of carbon)) by 2100, but a twice as high production of CO
2
–Ce (241 ± 138 g CO
2
–Ce kgC
−1
) under anoxic conditions. These findings challenge the view of a stronger permafrost carbon-climate feedback from drained soils
1
,
7
and emphasize the importance of CH
4
production in thawing permafrost on climate-relevant timescales.
An organic carbon decomposition model, calibrated with laboratory incubations, indicates a greater production rate of CO
2
-C equivalents from waterlogged (compared to drained) permafrost soils, when the higher global warming potential of methane is factored in.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41558-018-0095-z</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-7147-1008</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1758-678X |
ispartof | Nature climate change, 2018-04, Vol.8 (4), p.309-312 |
issn | 1758-678X 1758-6798 1758-6798 |
language | eng |
recordid | cdi_swepub_primary_oai_DiVA_org_su_156052 |
source | Nature |
subjects | 704/106/125 704/106/47 704/47 Anoxia Anoxic conditions Carbon Carbon dioxide Carbon dioxide atmospheric concentrations Climate Climate Change Climate Change/Climate Change Impacts Decomposition Earth and Environmental Science Environment Environmental Law/Policy/Ecojustice Feedback Gases Global warming Greenhouse effect Greenhouse gases Letter Melting Methane Methane production Microbial activity Microorganisms Organic carbon Oxic conditions Permafrost Positive feedback Thawing |
title | Methane production as key to the greenhouse gas budget of thawing permafrost |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T12%3A22%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Methane%20production%20as%20key%20to%20the%20greenhouse%20gas%20budget%20of%20thawing%20permafrost&rft.jtitle=Nature%20climate%20change&rft.au=Knoblauch,%20Christian&rft.date=2018-04-01&rft.volume=8&rft.issue=4&rft.spage=309&rft.epage=312&rft.pages=309-312&rft.issn=1758-678X&rft.eissn=1758-6798&rft_id=info:doi/10.1038/s41558-018-0095-z&rft_dat=%3Cproquest_swepu%3E2021295880%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c462t-6f371a550e333ef811dce08811d3ecc093d4884be2351fb8d0949e51490f4d6c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2021295880&rft_id=info:pmid/&rfr_iscdi=true |