Loading…

Methane production as key to the greenhouse gas budget of thawing permafrost

Permafrost thaw liberates frozen organic carbon, which is decomposed into carbon dioxide (CO 2 ) and methane (CH 4 ). The release of these greenhouse gases (GHGs) forms a positive feedback to atmospheric CO 2 and CH 4 concentrations and accelerates climate change 1 , 2 . Current studies report a min...

Full description

Saved in:
Bibliographic Details
Published in:Nature climate change 2018-04, Vol.8 (4), p.309-312
Main Authors: Knoblauch, Christian, Beer, Christian, Liebner, Susanne, Grigoriev, Mikhail N., Pfeiffer, Eva-Maria
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c462t-6f371a550e333ef811dce08811d3ecc093d4884be2351fb8d0949e51490f4d6c3
cites cdi_FETCH-LOGICAL-c462t-6f371a550e333ef811dce08811d3ecc093d4884be2351fb8d0949e51490f4d6c3
container_end_page 312
container_issue 4
container_start_page 309
container_title Nature climate change
container_volume 8
creator Knoblauch, Christian
Beer, Christian
Liebner, Susanne
Grigoriev, Mikhail N.
Pfeiffer, Eva-Maria
description Permafrost thaw liberates frozen organic carbon, which is decomposed into carbon dioxide (CO 2 ) and methane (CH 4 ). The release of these greenhouse gases (GHGs) forms a positive feedback to atmospheric CO 2 and CH 4 concentrations and accelerates climate change 1 , 2 . Current studies report a minor importance of CH 4 production in water-saturated (anoxic) permafrost soils 3 – 6 and a stronger permafrost carbon–climate feedback from drained (oxic) soils 1 , 7 . Here we show through seven-year laboratory incubations that equal amounts of CO 2 and CH 4 are formed in thawing permafrost under anoxic conditions after stable CH 4 -producing microbial communities have established. Less permafrost carbon was mineralized under anoxic conditions but more CO 2 –carbon equivalents (CO 2 –Ce) were formed than under oxic conditions when the higher global warming potential (GWP) of CH 4 is taken into account 8 . A model of organic carbon decomposition, calibrated with the observed decomposition data, predicts a higher loss of permafrost carbon under oxic conditions (113 ± 58 g CO 2 –C kgC −1 (kgC, kilograms of carbon)) by 2100, but a twice as high production of CO 2 –Ce (241 ± 138 g CO 2 –Ce kgC −1 ) under anoxic conditions. These findings challenge the view of a stronger permafrost carbon-climate feedback from drained soils 1 , 7 and emphasize the importance of CH 4 production in thawing permafrost on climate-relevant timescales. An organic carbon decomposition model, calibrated with laboratory incubations, indicates a greater production rate of CO 2 -C equivalents from waterlogged (compared to drained) permafrost soils, when the higher global warming potential of methane is factored in.
doi_str_mv 10.1038/s41558-018-0095-z
format article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_su_156052</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2021295880</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-6f371a550e333ef811dce08811d3ecc093d4884be2351fb8d0949e51490f4d6c3</originalsourceid><addsrcrecordid>eNp1kN9LwzAQx4MoOOb-AN8CvlpNmqZNHsf8CRNfVHwLaXvpOl1Tk5Sx_fVmbMwnA-GOu899ufsidEnJDSVM3PqMci4SQuMnkifbEzSiRazkhRSnx1x8nqOJ90sSX0FzlssRmr9AWOgOcO9sPVShtR3WHn_BBgeLwwJw4wC6hR18TGOnHOoGArYmNvW67Rrcg1tp46wPF-jM6G8Pk0Mco_eH-7fZUzJ_fXyeTedJleVpSHLDCqo5J8AYAyMorSsgYhcZVBWRrM6EyEpIGaemFDWRmQROM0lMVucVG6Prva5fQz-UqnftSruNsrpVd-3HVFnXKD8oynPC04hf7fF4488APqilHVwXN1QpSWkquRAkUnRPVfEU78AcZSlRO5vV3mYVbVY7m9U2zqSHRSLbNeD-lP8f-gVljoAc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2021295880</pqid></control><display><type>article</type><title>Methane production as key to the greenhouse gas budget of thawing permafrost</title><source>Nature</source><creator>Knoblauch, Christian ; Beer, Christian ; Liebner, Susanne ; Grigoriev, Mikhail N. ; Pfeiffer, Eva-Maria</creator><creatorcontrib>Knoblauch, Christian ; Beer, Christian ; Liebner, Susanne ; Grigoriev, Mikhail N. ; Pfeiffer, Eva-Maria</creatorcontrib><description>Permafrost thaw liberates frozen organic carbon, which is decomposed into carbon dioxide (CO 2 ) and methane (CH 4 ). The release of these greenhouse gases (GHGs) forms a positive feedback to atmospheric CO 2 and CH 4 concentrations and accelerates climate change 1 , 2 . Current studies report a minor importance of CH 4 production in water-saturated (anoxic) permafrost soils 3 – 6 and a stronger permafrost carbon–climate feedback from drained (oxic) soils 1 , 7 . Here we show through seven-year laboratory incubations that equal amounts of CO 2 and CH 4 are formed in thawing permafrost under anoxic conditions after stable CH 4 -producing microbial communities have established. Less permafrost carbon was mineralized under anoxic conditions but more CO 2 –carbon equivalents (CO 2 –Ce) were formed than under oxic conditions when the higher global warming potential (GWP) of CH 4 is taken into account 8 . A model of organic carbon decomposition, calibrated with the observed decomposition data, predicts a higher loss of permafrost carbon under oxic conditions (113 ± 58 g CO 2 –C kgC −1 (kgC, kilograms of carbon)) by 2100, but a twice as high production of CO 2 –Ce (241 ± 138 g CO 2 –Ce kgC −1 ) under anoxic conditions. These findings challenge the view of a stronger permafrost carbon-climate feedback from drained soils 1 , 7 and emphasize the importance of CH 4 production in thawing permafrost on climate-relevant timescales. An organic carbon decomposition model, calibrated with laboratory incubations, indicates a greater production rate of CO 2 -C equivalents from waterlogged (compared to drained) permafrost soils, when the higher global warming potential of methane is factored in.</description><identifier>ISSN: 1758-678X</identifier><identifier>ISSN: 1758-6798</identifier><identifier>EISSN: 1758-6798</identifier><identifier>DOI: 10.1038/s41558-018-0095-z</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>704/106/125 ; 704/106/47 ; 704/47 ; Anoxia ; Anoxic conditions ; Carbon ; Carbon dioxide ; Carbon dioxide atmospheric concentrations ; Climate ; Climate Change ; Climate Change/Climate Change Impacts ; Decomposition ; Earth and Environmental Science ; Environment ; Environmental Law/Policy/Ecojustice ; Feedback ; Gases ; Global warming ; Greenhouse effect ; Greenhouse gases ; Letter ; Melting ; Methane ; Methane production ; Microbial activity ; Microorganisms ; Organic carbon ; Oxic conditions ; Permafrost ; Positive feedback ; Thawing</subject><ispartof>Nature climate change, 2018-04, Vol.8 (4), p.309-312</ispartof><rights>The Author(s) 2018</rights><rights>Copyright Nature Publishing Group Apr 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-6f371a550e333ef811dce08811d3ecc093d4884be2351fb8d0949e51490f4d6c3</citedby><cites>FETCH-LOGICAL-c462t-6f371a550e333ef811dce08811d3ecc093d4884be2351fb8d0949e51490f4d6c3</cites><orcidid>0000-0002-7147-1008</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-156052$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Knoblauch, Christian</creatorcontrib><creatorcontrib>Beer, Christian</creatorcontrib><creatorcontrib>Liebner, Susanne</creatorcontrib><creatorcontrib>Grigoriev, Mikhail N.</creatorcontrib><creatorcontrib>Pfeiffer, Eva-Maria</creatorcontrib><title>Methane production as key to the greenhouse gas budget of thawing permafrost</title><title>Nature climate change</title><addtitle>Nature Clim Change</addtitle><description>Permafrost thaw liberates frozen organic carbon, which is decomposed into carbon dioxide (CO 2 ) and methane (CH 4 ). The release of these greenhouse gases (GHGs) forms a positive feedback to atmospheric CO 2 and CH 4 concentrations and accelerates climate change 1 , 2 . Current studies report a minor importance of CH 4 production in water-saturated (anoxic) permafrost soils 3 – 6 and a stronger permafrost carbon–climate feedback from drained (oxic) soils 1 , 7 . Here we show through seven-year laboratory incubations that equal amounts of CO 2 and CH 4 are formed in thawing permafrost under anoxic conditions after stable CH 4 -producing microbial communities have established. Less permafrost carbon was mineralized under anoxic conditions but more CO 2 –carbon equivalents (CO 2 –Ce) were formed than under oxic conditions when the higher global warming potential (GWP) of CH 4 is taken into account 8 . A model of organic carbon decomposition, calibrated with the observed decomposition data, predicts a higher loss of permafrost carbon under oxic conditions (113 ± 58 g CO 2 –C kgC −1 (kgC, kilograms of carbon)) by 2100, but a twice as high production of CO 2 –Ce (241 ± 138 g CO 2 –Ce kgC −1 ) under anoxic conditions. These findings challenge the view of a stronger permafrost carbon-climate feedback from drained soils 1 , 7 and emphasize the importance of CH 4 production in thawing permafrost on climate-relevant timescales. An organic carbon decomposition model, calibrated with laboratory incubations, indicates a greater production rate of CO 2 -C equivalents from waterlogged (compared to drained) permafrost soils, when the higher global warming potential of methane is factored in.</description><subject>704/106/125</subject><subject>704/106/47</subject><subject>704/47</subject><subject>Anoxia</subject><subject>Anoxic conditions</subject><subject>Carbon</subject><subject>Carbon dioxide</subject><subject>Carbon dioxide atmospheric concentrations</subject><subject>Climate</subject><subject>Climate Change</subject><subject>Climate Change/Climate Change Impacts</subject><subject>Decomposition</subject><subject>Earth and Environmental Science</subject><subject>Environment</subject><subject>Environmental Law/Policy/Ecojustice</subject><subject>Feedback</subject><subject>Gases</subject><subject>Global warming</subject><subject>Greenhouse effect</subject><subject>Greenhouse gases</subject><subject>Letter</subject><subject>Melting</subject><subject>Methane</subject><subject>Methane production</subject><subject>Microbial activity</subject><subject>Microorganisms</subject><subject>Organic carbon</subject><subject>Oxic conditions</subject><subject>Permafrost</subject><subject>Positive feedback</subject><subject>Thawing</subject><issn>1758-678X</issn><issn>1758-6798</issn><issn>1758-6798</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kN9LwzAQx4MoOOb-AN8CvlpNmqZNHsf8CRNfVHwLaXvpOl1Tk5Sx_fVmbMwnA-GOu899ufsidEnJDSVM3PqMci4SQuMnkifbEzSiRazkhRSnx1x8nqOJ90sSX0FzlssRmr9AWOgOcO9sPVShtR3WHn_BBgeLwwJw4wC6hR18TGOnHOoGArYmNvW67Rrcg1tp46wPF-jM6G8Pk0Mco_eH-7fZUzJ_fXyeTedJleVpSHLDCqo5J8AYAyMorSsgYhcZVBWRrM6EyEpIGaemFDWRmQROM0lMVucVG6Prva5fQz-UqnftSruNsrpVd-3HVFnXKD8oynPC04hf7fF4488APqilHVwXN1QpSWkquRAkUnRPVfEU78AcZSlRO5vV3mYVbVY7m9U2zqSHRSLbNeD-lP8f-gVljoAc</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Knoblauch, Christian</creator><creator>Beer, Christian</creator><creator>Liebner, Susanne</creator><creator>Grigoriev, Mikhail N.</creator><creator>Pfeiffer, Eva-Maria</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7TG</scope><scope>7TN</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>H97</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M2P</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>SOI</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>DG7</scope><orcidid>https://orcid.org/0000-0002-7147-1008</orcidid></search><sort><creationdate>20180401</creationdate><title>Methane production as key to the greenhouse gas budget of thawing permafrost</title><author>Knoblauch, Christian ; Beer, Christian ; Liebner, Susanne ; Grigoriev, Mikhail N. ; Pfeiffer, Eva-Maria</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-6f371a550e333ef811dce08811d3ecc093d4884be2351fb8d0949e51490f4d6c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>704/106/125</topic><topic>704/106/47</topic><topic>704/47</topic><topic>Anoxia</topic><topic>Anoxic conditions</topic><topic>Carbon</topic><topic>Carbon dioxide</topic><topic>Carbon dioxide atmospheric concentrations</topic><topic>Climate</topic><topic>Climate Change</topic><topic>Climate Change/Climate Change Impacts</topic><topic>Decomposition</topic><topic>Earth and Environmental Science</topic><topic>Environment</topic><topic>Environmental Law/Policy/Ecojustice</topic><topic>Feedback</topic><topic>Gases</topic><topic>Global warming</topic><topic>Greenhouse effect</topic><topic>Greenhouse gases</topic><topic>Letter</topic><topic>Melting</topic><topic>Methane</topic><topic>Methane production</topic><topic>Microbial activity</topic><topic>Microorganisms</topic><topic>Organic carbon</topic><topic>Oxic conditions</topic><topic>Permafrost</topic><topic>Positive feedback</topic><topic>Thawing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Knoblauch, Christian</creatorcontrib><creatorcontrib>Beer, Christian</creatorcontrib><creatorcontrib>Liebner, Susanne</creatorcontrib><creatorcontrib>Grigoriev, Mikhail N.</creatorcontrib><creatorcontrib>Pfeiffer, Eva-Maria</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Science Journals</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Stockholms universitet</collection><jtitle>Nature climate change</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Knoblauch, Christian</au><au>Beer, Christian</au><au>Liebner, Susanne</au><au>Grigoriev, Mikhail N.</au><au>Pfeiffer, Eva-Maria</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Methane production as key to the greenhouse gas budget of thawing permafrost</atitle><jtitle>Nature climate change</jtitle><stitle>Nature Clim Change</stitle><date>2018-04-01</date><risdate>2018</risdate><volume>8</volume><issue>4</issue><spage>309</spage><epage>312</epage><pages>309-312</pages><issn>1758-678X</issn><issn>1758-6798</issn><eissn>1758-6798</eissn><abstract>Permafrost thaw liberates frozen organic carbon, which is decomposed into carbon dioxide (CO 2 ) and methane (CH 4 ). The release of these greenhouse gases (GHGs) forms a positive feedback to atmospheric CO 2 and CH 4 concentrations and accelerates climate change 1 , 2 . Current studies report a minor importance of CH 4 production in water-saturated (anoxic) permafrost soils 3 – 6 and a stronger permafrost carbon–climate feedback from drained (oxic) soils 1 , 7 . Here we show through seven-year laboratory incubations that equal amounts of CO 2 and CH 4 are formed in thawing permafrost under anoxic conditions after stable CH 4 -producing microbial communities have established. Less permafrost carbon was mineralized under anoxic conditions but more CO 2 –carbon equivalents (CO 2 –Ce) were formed than under oxic conditions when the higher global warming potential (GWP) of CH 4 is taken into account 8 . A model of organic carbon decomposition, calibrated with the observed decomposition data, predicts a higher loss of permafrost carbon under oxic conditions (113 ± 58 g CO 2 –C kgC −1 (kgC, kilograms of carbon)) by 2100, but a twice as high production of CO 2 –Ce (241 ± 138 g CO 2 –Ce kgC −1 ) under anoxic conditions. These findings challenge the view of a stronger permafrost carbon-climate feedback from drained soils 1 , 7 and emphasize the importance of CH 4 production in thawing permafrost on climate-relevant timescales. An organic carbon decomposition model, calibrated with laboratory incubations, indicates a greater production rate of CO 2 -C equivalents from waterlogged (compared to drained) permafrost soils, when the higher global warming potential of methane is factored in.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41558-018-0095-z</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-7147-1008</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1758-678X
ispartof Nature climate change, 2018-04, Vol.8 (4), p.309-312
issn 1758-678X
1758-6798
1758-6798
language eng
recordid cdi_swepub_primary_oai_DiVA_org_su_156052
source Nature
subjects 704/106/125
704/106/47
704/47
Anoxia
Anoxic conditions
Carbon
Carbon dioxide
Carbon dioxide atmospheric concentrations
Climate
Climate Change
Climate Change/Climate Change Impacts
Decomposition
Earth and Environmental Science
Environment
Environmental Law/Policy/Ecojustice
Feedback
Gases
Global warming
Greenhouse effect
Greenhouse gases
Letter
Melting
Methane
Methane production
Microbial activity
Microorganisms
Organic carbon
Oxic conditions
Permafrost
Positive feedback
Thawing
title Methane production as key to the greenhouse gas budget of thawing permafrost
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T12%3A22%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Methane%20production%20as%20key%20to%20the%20greenhouse%20gas%20budget%20of%20thawing%20permafrost&rft.jtitle=Nature%20climate%20change&rft.au=Knoblauch,%20Christian&rft.date=2018-04-01&rft.volume=8&rft.issue=4&rft.spage=309&rft.epage=312&rft.pages=309-312&rft.issn=1758-678X&rft.eissn=1758-6798&rft_id=info:doi/10.1038/s41558-018-0095-z&rft_dat=%3Cproquest_swepu%3E2021295880%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c462t-6f371a550e333ef811dce08811d3ecc093d4884be2351fb8d0949e51490f4d6c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2021295880&rft_id=info:pmid/&rfr_iscdi=true