Loading…
Synthesis and Structure of a Layered Fluoroaluminophosphate and Its Transformation to a Three-Dimensional Zeotype Framework
Two-dimensional zeolitic materials have drawn increasing attention because of their structural diversity, high accessible surface areas, and potential as precursors to form novel three-dimensional (3D) structures. Here we report a new layered fluoroaluminophosphate, denoted as EMM-9 (ExxonMobil Mate...
Saved in:
Published in: | Inorganic chemistry 2018-09, Vol.57 (18), p.11753-11760 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Two-dimensional zeolitic materials have drawn increasing attention because of their structural diversity, high accessible surface areas, and potential as precursors to form novel three-dimensional (3D) structures. Here we report a new layered fluoroaluminophosphate, denoted as EMM-9 (ExxonMobil Material #9), synthesized in the same synthesis system as that for a previously reported 3D framework structure EMM-8 (framework-type code: SFO) using an F– medium and 4-(dimethylamino)pyridine (DMAP) as the organic structure-directing agent. The structure of EMM-9 was solved from rotation electron diffraction data and refined against synchrotron powder X-ray diffraction data. The fluoroaluminophosphate layer of EMM-9 is composed of sti composite building units. The DMAP cations are located between the layers. π–π interactions between the DMAP cations and hydrogen bonding between the DMAP cations and layers were identified. The layered EMM-9 structure is closely related to the 3D framework structure of EMM-8 and can be transformed to EMM-8 by calcination. |
---|---|
ISSN: | 0020-1669 1520-510X 1520-510X |
DOI: | 10.1021/acs.inorgchem.8b01890 |